についてお探し中...

【2024年】「群論」のおすすめ 本 80選!人気ランキング

この記事では、「群論」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. 代数学1 群論入門 (代数学シリーズ)
  2. 群・環・体入門
  3. 初めて学ぶ人のための群論入門 新装版
  4. 代数学2 環と体とガロア理論 (代数学シリーズ)
  5. 代数系入門 (松坂和夫 数学入門シリーズ 3)
  6. 代数学1群と環 (大学数学の入門 1)
  7. 演習 群・環・体入門
  8. 代数学 2 (大学数学の入門 2)
  9. 代数学3 代数学のひろがり
  10. Atiyah-MacDonald 可換代数入門
他70件
No.1
100
みんなのレビュー
まだレビューはありません
No.3
82
みんなのレビュー
まだレビューはありません
No.4
80
みんなのレビュー
まだレビューはありません
No.5
79

代数系入門 : 群・環・体・ベクトル空間を初歩から

みんなのレビュー
まだレビューはありません
No.6
77

現代数学の基礎となる群と環.その初歩を,東京大学理学部数学科で行われている講義「代数学I」のシラバスに基づきつつ,具体例を交えてわかりやすく解説.テーマをしぼり,コンパクトにまとめる新しい教科書シリーズの第1冊目.演習問題も多数. はじめに 第1章 群の理論  群の定義/部分群/いろいろな群の例/剰余類と剰余群/準同型写像と  準同型定理/直積/共役類/可解群/シローの定理/章末問題 第2章 環の理論  環の定義/部分環と直積/多項式環/イデアルと剰余環/準同型写像/  一意分解整域/素イデアルと極大イデアル/単項イデアル整域/商体/  素体と標数/単項イデアル整域上の多項式環/章末問題 問題の略解/参考文献/索引

みんなのレビュー
まだレビューはありません
No.7
72
みんなのレビュー
まだレビューはありません
No.8
68

ベクトル空間の一般化である環上の加群は,数学を学ぶ学生にとって必ず身につけておくべき基礎知識である.本書は,その理論について,具体例を交えていねいに解説.理解を確実にし,さらに進んだ内容を学びたい読者のために,演習問題も多数. 第1章 環上の加群の基礎 環上の加群の定義/準同型写像と準同型定理/直和と自由加群/完全系列/単因子論/有限生成アーベル群の基本定理 第2章 テンソル積とテンソル代数 テンソル積の定義/テンソル積の性質/テンソル代数/交代代数と対称代数/射影加群 第3章 有限群の表現論 群の表現/完全可約/シューアの補題とマシュケの定理/指標/指標の第2直交関係 第4章 ネター加群 ネター加群の基礎/クルル・レマク・シュミットの定理/ウェッダーバーンの構造定理

みんなのレビュー
まだレビューはありません
No.9
68
みんなのレビュー
まだレビューはありません
No.11
66
みんなのレビュー
まだレビューはありません
No.14
62

見える! 群論入門

脇 克志
日本評論社
みんなのレビュー
まだレビューはありません
No.15
62
みんなのレビュー
まだレビューはありません
No.17
62
みんなのレビュー
まだレビューはありません
No.18
61
みんなのレビュー
まだレビューはありません
No.19
61

代数学とは何か

I.R.シャファレヴィッチ
丸善出版
みんなのレビュー
まだレビューはありません
No.20
61

対称性からの群論入門

M.A. アームストロング (Mark Anthony Armstrong)
シュプリンガー・ジャパン株式会社
みんなのレビュー
まだレビューはありません
No.21
61
みんなのレビュー
まだレビューはありません
No.22
60
みんなのレビュー
まだレビューはありません
No.23
60
みんなのレビュー
まだレビューはありません
No.24
60

群論序説

星 明考
日本評論社
みんなのレビュー
まだレビューはありません
No.25
60
みんなのレビュー
まだレビューはありません
No.26
60
みんなのレビュー
まだレビューはありません
No.27
60

文献あり

みんなのレビュー
まだレビューはありません
No.28
60

現代数学を支える線形代数.本書は,ジョルダン標準形や,双対空間,商空間,テンソル積などを解説した,さらに進んだ線形代数を学びたい人たちのための教科書である.数学特有の「ことば」や「考え方」についても随所で説明.基本的例・問題も多数. ※本書について斎藤先生が「UP」にエッセイをご執筆されています.こちらのPDFファイルをご覧ください. 第1章 線形空間  体/線形空間の定義/線形空間の例/部分空間/次元/無限次元空間 第2章 線形写像 線形写像の定義/線形写像の例/行列表示/核と像/完全系列と直和分解 第3章 自己準同形 最小多項式/固有値と対角化/一般固有空間と三角化/巾零自己準同形とジョルダン標準形/行列式/固有多項式/応用:漸化式をみたす数列と定数係数線形常微分方程式 第4章 双対空間 双対空間/零化空間、再双対空間/双対写像/線形写像の空間 第5章 双線形形式 双線形形式/対称形式/エルミート形式/交代形式 第6章 群と作用 群/群の作用/部分群 第7章 商空間 well-defined/商空間の定義/商空間と線形写像 第8章 テンソル積と外積 双線形写像/テンソル積/線形写像のテンソル積/外積と行列式

みんなのレビュー
まだレビューはありません
No.32
59

索引あり

みんなのレビュー
まだレビューはありません
No.33
59

代数学

みんなのレビュー
まだレビューはありません
No.34
59
みんなのレビュー
まだレビューはありません
No.36
59
みんなのレビュー
まだレビューはありません
No.37
59
みんなのレビュー
まだレビューはありません
No.38
59

5次以上の方程式には根の公式は存在しない——数学の基本理論であるガロア理論は,学部数学科で学ぶ最も美しい理論のひとつである.さらに現在,抽象幾何学や暗号理論など様々な分野にも応用されている.その基礎を,初学者のためにわかりやすく解説. 第1章 体の理論 拡大体/代数的拡大/分解体/代数的閉体/分離拡大体,非分離拡大体/体の同型写像/ガロア拡大/超越的拡大/章末問題 第2章 ガロア理論 ガロアの基本定理/ガロア群の計算例/円分体/トレースとノルム/有限体/巡回クンマー拡大/方程式のべき根による解法/2次方程式,3次方程式,4次方程式/定規とコンパスによる作図/作図問題の具体例/章末問題 第3章 ガロア理論続論 代数学の基本定理/正規底/ガロア・コホモロジー/クンマー拡大/アルティン・シュライアー拡大とヴィットの理論/章末問題 参考文献/章末問題の解答/索引/人名表

みんなのレビュー
まだレビューはありません
No.39
59

基礎的な内容に発展的な話題を加えた入門書。位相空間の発展の歴史の中から9つの話題を精選し、関連する結果をていねいに解説した。 基礎的な内容に発展的な話題を加えた入門書。位相空間の発展の歴史の中から9つの話題を精選し、関連する結果をていねいに解説した。 基礎的な内容に発展的な話題を加えた入門書。位相空間の発展の歴史の中から9つの話題を精選し、関連する結果をていねいに解説した。 第1部 基礎編 第1章 距離空間 第2章 位相空間と連続写像 第3章 基底・部分基底と位相の生成 第4章 積空間・商空間・直和空間 第5章 分離公理とコンパクト空間 第6章 連結空間 第7章 距離空間のコンパクト性・完備性・可分性 第2部 発展編 第8章 商写像の直積写像とホワイトヘッドの定理 第9章 正規空間とウリソーンの補題 第10章 ティコノフの定理とチェック・ストーンコンパクト化 第11章 局所有限性とA.H.ストーンの定理 第12章 コンパクト距離空間とカントール集合 第13章 ペアノ連続体とハーン・マズルケビッチの定理 第14章 積空間の可算鎖条件とマーティンの公理 第15章 積空間の正規性とダウカーの定理 第16章 位相次元と次元の一致定理

みんなのレビュー
まだレビューはありません
No.40
59
みんなのレビュー
まだレビューはありません
No.41
59
みんなのレビュー
まだレビューはありません
No.42
59
みんなのレビュー
まだレビューはありません
No.43
59

大学理工系・教育系、高専の学生のための良き教科書、参考書。 省末に500題以上の豊富な練習問題があり、演習書としても好適。 大学理工系・教育系、高専の学生のための良き教科書、参考書。 省末に500題以上の豊富な練習問題があり、演習書としても好適。 数学的厳密さを失うことなく容易に理解できるよう工夫がなされている。 第1章 複素数 第2章 正則関数 第3章 初等関数 第4章 積分 第5章 級数 第6章 留数と極 第7章 初等関数による写像 第8章 等角写像とその応用 第9章 解析接続とリーマン面 練習問題の解答

みんなのレビュー
まだレビューはありません
No.45
59

現代数学の視点から解説した本格的入門書。初学者にとって理解しやすい一方、専門家が目を見張る水準まで証明の切れ味を磨きぬいた。  現代数学の視点から標準的内容を解説した関数解析の本格的入門書。初学者にとって理解しやすい一方、専門家までもが目を見張る水準まで定式化の美しさ、証明の切れ味を磨きぬくという著者の精神が貫かれている。証明法や具体例については、下記のような特色をもつ。多数の練習問題(問)も収録。 ◆本書の特徴◆● 定理や命題は可能な限り自然で一般的仮定のもとで証明した。● 具体例をできるだけ多く取り入れ、それらを通じ、理論の有用性を実感できるように工夫した。● 一様有界性原理、開写像定理、閉グラフ定理(「関数解析三大定理」)に対し、近年、ベールの範疇定理を経由しない初等的・直接的証明法が発見された。本書ではこの新しい証明を採用した。● 関数解析の手法は解析学の様々な分野に応用される。例えば、複素関数論への応用としてハーディ空間、ベルグマン空間を紹介した。また、偏微分方程式への応用としてディリクレ問題に一節を設けた他、バナッハ・アラオグルの定理の応用例として非線形偏微分方程式にも言及した。● 20世紀後半の数学の中でも屈指の重要結果であるアティヤ・シンガーの指数定理のひな形ともなったテープリッツの指数定理について最終節で詳しく述べた。● 付録にルベーグ積分摘要を設けることにより、ルベーグ積分未習読者でも既習読者と遜色なく学習が進められるよう配慮した。 0.序 1.バナッハ空間とヒルベルト空間 2.有界作用素 3.共役空間 4.閉作用素 5.一様有界性原理・開写像定理・閉グラフ定理 6.弱位相・汎弱位相 7.レゾルベントとスペクトル 8.フレドホルム作用素 付録A.集合・線形代数・距離空間 付録B.ルベーグ積分論摘要 付録C.問の略解

みんなのレビュー
まだレビューはありません
No.47
59
みんなのレビュー
まだレビューはありません
No.48
58
みんなのレビュー
まだレビューはありません
No.51
58

文字通り,代数学の教本です.代数系の基本概念を扱い、著者の長年の講義経験が随所に生かされた大学理系2,3年生向け教科書・参… 文字通り、代数学の教本である. 微積分の基礎や線形代数の知識を前提として「群」「環」「体」「環上の加群」 といった代数系を扱う.次の2点を大まかな指針とした. ・基本的な知識と,それを活用する考え方を習得できる. ・将来専門的な勉強に進んだときにも,必要な知識をそのつど自力で   身につけることができるようにする. 著者の長年の講義経験が随所に生かされた教科書・参考書。 第1章 代数学入門 第2章 群 第3章 環と体 第4章 環上の加群 第5章 体の拡大とガロア理論 問の解答

みんなのレビュー
まだレビューはありません
No.52
58

層とホモロジー代数

みんなのレビュー
まだレビューはありません
No.55
58
みんなのレビュー
まだレビューはありません
No.56
58

多様体は,現代数学の中心的な概念のひとつである.本書は初めて多様体を学ぶ人のためになるべくわかりやすく記述するという立場を貫き,扱う題材も基礎的なものに絞ってていねいに解説した.応用をめざす人にとってもさらに高度な理論をめざす人にとっても好適. まえがき 第1章 準備 第2章 Cr級多様体とCr級写像 第3章 接ベクトル空間 第4章 はめ込みと埋め込み 第5章 ベクトル場 第6章 微分形式 付録A Dpr(M)とTp(M)の関係 付録B 射影平面P2がR3に埋め込めないことの証明 演習問題解答

みんなのレビュー
まだレビューはありません
No.57
58

現代数学において最も重要な概念のひとつである多様体.その基礎理論について,東京大学数学科で行われている講義「幾何学I」のシラバスに基づき,ていねいに解説.美しい図版を豊富に用い,読者の直観的理解を助ける.演習問題も多数. 第1章 多様体論について 第2章 ユークリッド空間内の多様体 第3章 多様体の定義 第4章 接空間 第5章 多様体上の関数 第6章 多様体上のフロー 第7章 多様体上の曲線の長さ 第8章 多様体上のベクトル場 参考文献/索引/人名表

みんなのレビュー
まだレビューはありません
No.58
58
みんなのレビュー
まだレビューはありません
No.59
58
みんなのレビュー
まだレビューはありません
No.60
58

図形を分類し,その多様性を知るための手法であり,現代の幾何学を学ぶうえでかかせないホモロジー理論.本書はその基礎からていねいに解説する教科書である.図版も豊富に掲載し,読者の理解を助ける.また,詳細な解答の付いた例題・問題も多数. はじめに 記号表 第1章 弧状連結性とホモトピー  1.1 空間の分類  1.2 写像のホモトピー  1.3 ホモトピー群  1.4 基本群  1.5 第1章の問題の解答 第2章 ホモロジー理論の概要  2.1 ホモロジー理論の公理  2.2 球面の次元とホモロジー群  2.3 写像度  2.4 第2章の問題の解答 第3章 胞体複体  3.1 空間の貼り合わせ  3.2 有限胞体複体  3.3 チェイン複体  3.4 有限胞体複体のホモロジー群  3.5 有限胞体複体のチェイン複体とホモロジー群  3.6 胞体写像  3.7 多様体の胞体分割(展開)  3.8 第3章の問題の解答 第4章 チェイン複体とホモロジー群の計算  4.1 チェイン写像  4.2 胞体複体の対  4.3 マイヤー・ビエトリス完全系列  4.4 キネットの公式と普遍係数定理  4.5 コホモロジー群  4.6 第4章の問題の解答 第5章 単体複体とそのホモロジー群  5.1 単体複体  5.2 胞体複体としての単体複体  5.3 単体複体に付随するチェイン複体  5.4 単体複体に対するホモロジー理論  5.5 単体近似  5.6 単体複体の直積  5.7 第5章の問題の解答 第6章 特異単体複体  6.1 特異単体複体  6.2 ジョルダン・ブラウアーの定理と領域不変性(展開)  6.3 第6章の問題の解答 第7章 空間の位相の研究へ  7.1 ファンカンペンの定理の証明  7.2 有限胞体複体の基本群  7.3 ファイバー空間のホモトピー完全系列  7.4 被覆空間  7.5 有限胞体複体の対のホモトピー群(展開)  7.6 フレビッツの定理(展開)  7.7 有限胞体複体のホモトピー型(展開)  7.8 ファイバー束の自明性(展開)  7.9 ファイバー束の切断(展開)  7.10 ベクトル束と球面束(展開)  7.11 等質空間(展開)  7.12 分類空間(展開)  7.13 第7章の問題の解答 参考文献/記号索引/用語索引/人名表

みんなのレビュー
まだレビューはありません
No.61
58

巻末:参考文献

みんなのレビュー
まだレビューはありません
No.62
58
みんなのレビュー
まだレビューはありません
No.63
58

位相幾何学(トポロジー)のなかでも、「基本群」とその延長線上にある「被覆空間」の理論を詳しく解説する。 位相幾何学(トポロジー)のなかでも、「基本群」とその延長線上にある「被覆空間」の理論を詳しく解説する。講義やセミナーでの使用を念頭に、具体例や背景を重視して、できる限り丁寧な説明に徹した。  位相幾何学(トポロジー)のなかでも、「基本群」とその延長線上にある「被覆空間」の理論を詳しく解説する。講義やセミナーでの使用を念頭に、具体例や背景を重視して、できる限り丁寧な説明に徹した。幾何学、トポロジーをこころざす学生にすすめたい、待望の入門書。【本書の特徴】● 円周の基本群の計算やザイフェルト‐ファン・カンペンの定理は、証明が短く簡明に記述できるものを採用した。● 被覆空間の定義は、全空間、底空間ともに連結性やハウスドルフ性などを一概に仮定せず、定理ごとに本質的な条件は何かを意識してもらえるよう、都度必要な条件を挙げる形をとった。● 真性不連続作用と、その軌道空間がハウスドルフになるための十分条件、モノドロミー作用を用いた有限被覆空間の分類について詳しく述べた。● 具体例を用いて、トーラスの被覆空間の同値類をすべて与えた。● 用語・記号の統一もかねて、予備知識となる位相空間論と群論の基礎事項について前半で概説を行った。読み進める中で、必要に応じて内容を確認・参照することができる。● 最終章の第6章では、基本群と被覆空間の応用として、和書での扱いが少ない、組みひも群と配置空間について、入門的内容を解説した。 1.位相空間論 2.群 3.いろいろな位相空間 4.基本群 5.被覆空間 6.組みひも群

みんなのレビュー
まだレビューはありません
No.64
58

ホモロジー群の基本性質からポアンカレの双対定理とその応用までを網羅したテキスト。トポロジー初学者および隣接分野を含めた非専門家を読者対象とし、徹底的にていねいに解説。本文で学んだ内容の理解を深めるため、各節ごとに演習問題を用意し、くわしい解答もつける。 はじめに 第1章 ホモロジー群とはどういうものか?  1.1 弧状連結成分  1.2 第0ホモロジー群  1.3 ホモロジー群とはどのようなものか?  1.4 球面の写像度 第2章 ホモロジー群を作る  2.1 特異ホモロジー群の定義  2.2 特異ホモロジー群のホモトピー不変性  2.3 ホモロジー完全列  2.4 Mayer-Vietoris完全列 第3章 基本群とvan Kampenの定理  3.1 基本群の定義と簡単な性質  3.2 van Kampen の定理  3.3 基本群とホモロジー群 第4章 空間対についてホモロジー群を考える  4.1 空間対のホモロジー群  4.2 写像度の局所化  4.3 Euler標数と有限胞体複体  4.4 有限胞体複体のホモロジー群  4.5 多様体の基本類 附 録 準備的補足  A.1 位相空間と連続写像  A.2 集合についての補足  A.3 群  A.4 可換環上の加群  A.5 圏と函手

みんなのレビュー
まだレビューはありません
No.65
58

位相的データ解析は,物質科学・機械学習などの応用だけでなく,基礎理論や純粋数学の研究にも寄与している.本書ではパーシステントホモロジーを中心に,位相的データの数理的基礎・アルゴリズムから様々な応用まで解説した. 位相的データ解析とその考え方は,物質科学・機械学習などの応用だけでなく,基礎理論や純粋数学の研究にも寄与している.本書では特にパーシステントホモロジーを中心に,位相的データの数理的基礎・アルゴリズムから様々な応用までをコンパクトに解説した. 位相的データ解析の概観/パーシステントホモロジー/パーシステントホモロジーの代数的構造/応用に有用な3つの理論/パーシステントホモロジーの応用/本書のまとめと展望/ホモロジーに関する補足/機械学習の速習/等長定理の証明の概略

みんなのレビュー
まだレビューはありません
No.67
58
みんなのレビュー
まだレビューはありません
No.68
58
みんなのレビュー
まだレビューはありません
No.70
58

現在も活発に発展を続ける力学系的な広がりのある幾何学から3つのテーマを第一人者が解説. 現代の幾何学,トポロジー,力学系などの広い範囲の数学に強く影響を及ぼしながら発展する分野の中から,特に重要かつ現在も活発に発展を続ける力学系的な広がりのある幾何学を取り上げ,3つのテーマを独立した3つの章で構成し各々第一人者が解説.〔内容〕アノソフ系と多様体上の双曲力学系/複素力学系/ラージスケール幾何学

みんなのレビュー
まだレビューはありません
No.76
58
みんなのレビュー
まだレビューはありません
No.78
58
みんなのレビュー
まだレビューはありません
No.79
58
みんなのレビュー
まだレビューはありません
No.80
58
みんなのレビュー
まだレビューはありません
search