【2024年】「数理最適化」のおすすめ 本 118選!人気ランキング
- これなら分かる最適化数学: 基礎原理から計算手法まで
- AI・データ分析プロジェクトのすべて[ビジネス力×技術力=価値創出]
- Kaggleで勝つデータ分析の技術
- はじめてのパターン認識
- データ分析のための数理モデル入門 本質をとらえた分析のために
- Pythonで学ぶ数理最適化による問題解決入門
- 前処理大全[データ分析のためのSQL/R/Python実践テクニック]
- パターン認識と機械学習 上
- 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
- データ視覚化のデザイン
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
自然科学・工学・医学等への応用をめざしつつ,さまざまな統計学的考え方を紹介し,その基礎をわかりやすく解説する.シリーズIと同様に,豊富に実際例を用いつつ,図表を多くとり入れて,視覚的にもわかりやすく統計学を親しみながら学べるよう編集した. 第1章 確率の基礎(矢島美寛) 第2章 線形モデルと最小二乗法(廣津千尋) 第3章 実験データの分析(藤野和建) 第4章 最尤法(廣津千尋) 第5章 適合度検定(廣津千尋) 第6章 検定と標本の大きさ(竹村彰通) 第7章 分布の仮定(竹内 啓,藤野和建) 第8章 質的データの統計的分析(縄田和満) 第9章 ベイズ決定(松原 望) 第10章 確率過程の基礎(矢島美寛) 第11章 乱数の性質(伏見正則)
「彼が京大に入る確率は80%」などというように,「確率」は日常の用語としても広く使われる.しかし,そもそも確率とは何か? 厳密な公理的確率論が確立しているがために,かえってこれまでの教科書では,確率とは何か,をきちんと語っていない.日常の「確率」概念を根底から問い直すところから,読者を数学の世界に誘う.
自然言語処理編
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page. FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
オークション等の注目のトピックスを盛り込み,解説をさらに丁寧に初学者にわかりやすく,新たに2色刷としてさらに読みやすく一新。 基礎から新しい研究成果までをカバーし,楽しみながらゲーム理論のエッセンスとその考え方を学べるスタンダードテキストの新版。オークション等の注目トピックスを盛り込み,さらに丁寧な解説でわかりやすく,新たに2色刷としてさらに読みやすく一新。 第1章 ゲーム理論とは何だろうか? 第2章 選択と意思決定 第3章 戦略ゲーム 第4章 ナッシュ均衡点 第5章 利害の対立と協力 第6章 ダイナミックなゲーム 第7章 繰り返しゲーム 第8章 不確実な相手とのゲーム 第9章 交渉ゲーム 第10章 グループ形成と利得分配 第11章 進化ゲーム 第12章 ゲーム実験
第1章 最適設計の基礎 第2章 最適化理論の基礎 第3章 数理計画法の基礎 第4章 変分原理と関数解析の基礎 第5章 偏微分方程式の境界値問題 第6章 数値解析の基礎 第7章 抽象的最適設計問題 第8章 密度変動型の位相最適化問題 第9章 領域変動型の形状最適化問題 形状全体を設計対象として最適形状を求めることができる有効な手法,「形状最適化」の理論を体系的にまとめた,日本初の書籍.弾性体や流れ場を対象にした連続体の形状最適化問題について,その構成法と解法を基礎から丁寧に解説.数学的に正確に記述しながら,力学の例題を用いて解説をおこない,工学系の読者が理解できるよう工夫している.形状設計にかかわる技術者や研究者,学生にとって有用な一冊である. 理論を体系的にまとめた,日本初の書籍.工学系の読者向けに,数学的に正確に記述しながら,力学の例題を用いて解説した.