【2023最新】「svm」のおすすめ本!人気ランキング

この記事では、「svm」のおすすめ本をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. パターン認識のためのサポートベクトルマシン入門
  2. サポートベクターマシン入門
  3. 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
  4. サポートベクトルマシン (機械学習プロフェッショナルシリーズ)
  5. TensorFlowではじめるDeepLearning実装入門 (impress top gear)
  6. カーネル法入門―正定値カーネルによるデータ解析 (シリーズ 多変量データの統計科学)
  7. scikit-learn、Keras、TensorFlowによる実践機械学習 第2版
  8. ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ)
  9. やさしく学べるサポートベクトルマシン: 数学の基礎とPythonによる実践
  10. はじめてのパターン認識
他18件
No.1
100
みんなのレビュー
まだレビューはありません
No.2
93

サポートベクターマシン入門

クリスティアニーニ,ネロ
共立出版
みんなのレビュー
まだレビューはありません
No.3
86

機械学習の原理を知るための、初めての入門書 本書は具体的なデータ分析の手法を説明する意図で書かれたものではありません。 実用的な目的ならscikit-learnやChainerなどの既存のフレームワークを使うべきですが、本書では機械学習のいくつかの有名なアルゴリズムを、自分でゼロから実装することを目標としています。こうすることにより、とかくブラックボックスになりがちな機械学習の仕組みを理解し、さらなる応用力と問題解決力を身につけることができるようになります。 また、処理系にはデファクトスタンダードであるPythonを使い、機械学習に必要な数学の知識もわかりやすく解説しています。 これから機械学習を始める学生さんや、いきなりプロジェクトに放り込まれていまいち理解できないままデータ分析の仕事をしているエンジニアの方にも最適です。 ●目次 はじめに 第01章 学習を始める前に  01 本書の目的  02 本書は何を含まないか  03 機械学習の初歩  04 実行環境の準備 第02章 Pythonの基本  01 プログラムの実行方法  02 基本的な文法  03 数値と文字列  04 複数行処理  05 制御構造  06 リスト、辞書、集合  07 関数定義  08 オブジェクト指向  09 モジュール  10 ファイル操作  11 例外処理 第03章 機械学習に必要な数学  01 基本事項の確認  02 線形代数  03 微積分 第04章 Pythonによる数値計算  01 数値計算の基本  02 NumPyの基本  03 配列の基本計算  04 疎行列  05 NumPy/SciPyによる線形代数  06 乱数  07 データの可視化  08 数理最適化  09 統計 第05章 機械学習アルゴリズム  01 準備  02 回帰  03 リッジ回帰  04 汎化と過学習  05 ラッソ回帰  06 ロジスティック回帰  07 サポートベクタマシン  08 k-Means法  09 主成分分析(PCA) INDEX はじめに 第01章 学習を始める前に  01 本書の目的  02 本書は何を含まないか  03 機械学習の初歩  04 実行環境の準備 第02章 Pythonの基本  01 プログラムの実行方法  02 基本的な文法  03 数値と文字列  04 複数行処理  05 制御構造  06 リスト、辞書、集合  07 関数定義  08 オブジェクト指向  09 モジュール  10 ファイル操作  11 例外処理 第03章 機械学習に必要な数学  01 基本事項の確認  02 線形代数  03 微積分 第04章 Pythonによる数値計算  01 数値計算の基本  02 NumPyの基本  03 配列の基本計算  04 疎行列  05 NumPy/SciPyによる線形代数  06 乱数  07 データの可視化  08 数理最適化  09 統計 第05章 機械学習アルゴリズム  01 準備  02 回帰  03 リッジ回帰  04 汎化と過学習  05 ラッソ回帰  06 ロジスティック回帰  07 サポートベクタマシン  08 k-Means法  09 主成分分析(PCA) INDEX

みんなのレビュー
まだレビューはありません
No.5
78

TensorFlowの機能を組み合わせて実践的な深層学習モデルを構築しよう!ニューラルネットワークの基礎、CNNやRNNはもちろん、転移学習を用いたキャプション生成までを1冊に凝縮。データ整形からモデル構築までをステップ・バイ・ステップで解説。 第1章 ニューラルネットワークと深層学習(機械学習 教師あり学習・教師なし学習 ほか) 第2章 TensorFlow入門-計算グラフと手書き数字認識(TensorFlowとは? 計算グラフとDefine and Run ほか) 第3章 TensorFlowをもう少し入門-TensorBoard、CNN、モデルの保存(可視化ツールTensorBoard TensorBoardの見方 ほか) 第4章 TensorFlowでRNN-時系列情報および自然言語の扱い(Recurrent Neural Network TensorFlowにおけるRNN実装 ほか) 第5章 TensorFlowでニューラルイメージキャプショニング(画像キャプショニング 画像キャプショニングのためのデータセット ほか)

みんなのレビュー
まだレビューはありません
No.7
76
みんなのレビュー
まだレビューはありません
No.10
72
みんなのレビュー
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
No.11
72

最先端のデータ分析の手法を基礎から応用までざっと学べる1冊! 【本書の内容】 次代の花形職種である「データサイエンティスト」はどのような知識を身につけているのか? データサイエンスとは?という基礎から、実際にデータ分析するために必要なパソコンの知識、プログラミングの基礎、機械学習、画像解析まで。 気鋭の若手研究者による、データサイエンス入門の一冊。 【本書の目次】 第1部 データサイエンスの基本●(1)データサイエンスとは? 第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法 第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習 第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析 第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析 世界最先端の企業が喉から手が出るほど欲しい人材のひとつ、「データサイエンティスト」。この職につく人々が身につけるべき知識とはいったい何なのか。最先端のデータ分析の手法を基礎からざっと学べる1冊! 第1部 データサイエンスの基本●(1)データサイエンスとは? 第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法 第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習 第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析 第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析

みんなのレビュー
まだレビューはありません
No.12
66

統計的機械学習の数理100問のPython版!数式を導き,ソースプログラムを追い,具体的に手を動かしてスキルを身につける!  機械学習の書籍としておびただしい数の書籍が出版されているが,ななめ読みで終わる,もしくは難しすぎて読めないものが多く,「身につける」という視点で書かれたものは非常に少ないと言ってよい。本書は,100の問題を解くという演習のスタイルをとりながら,数式を導き,Pythonのソースプログラムを追い,具体的に手を動かしてみて,読者が自分のスキルにしていくことを目的としている。  本書は各章で解説のあとに問題を掲載している。解説を読んでから問題を解くこともできるが,まず問題から取り組む読み方もできる。その場合,数学の問題において導出の細部がわからなくても,解説に戻ればわかるようになっている。  「機械学習の数理100問」は,2018年後期と2019年後期の大阪大学基礎工学部情報科学科数理科学コース3年の講義でも使われ,また公開講座「機械学習・データ科学スプリングキャンプ」2018, 2019でも多くの参加者に解かれ,高い評価を得ている。また,その間に改良を重ねている。問題をすべて独力で解くのは,大学院生か学部の上位10%程度,もしくはその分野の研究開発に携わっていないと難しいかもしれないが,解説を読むだけでも十分な意味がある。  なお,本書は"Elements of Statistical Learning"(邦訳は共立出版『統計的学習の基礎』)や"Introduction to Statistical Learning with R"(邦訳は朝倉書店『Rによる統計的学習入門』)といった,統計的機械学習の世界的ベストセラーに準拠していて,レベル的にそれらの中間的なものになっている。前者は事典に近く,読者が何かを身につけるために書かれた書籍ではない。後者は初心者を対象として,感覚的な理解を促してパッケージを使わせることに終始し,本質に近づく視点が欠如していると言わざるを得ない。  本書を読むことで,機械学習に関する知識が得られることはもちろんだが,脳裏に数学的ロジックを構築し,プログラムを構成して具体的に検証していくという,データサイエンス業界で活躍するための資質が得られる。本書は「数理」「情報」「データ」といった人工知能時代を勝ち抜くために必須のスキルを身につけるための,うってつけの書籍である。 第0章 線形代数 0.1 逆行列 0.2 行列式 0.3 一次独立性 0.4 ベクトル空間とその次元 0.5 固有値と固有ベクトル 0.6 正規直交基底と直交行列 0.7 対称行列の対角化 付録 命題の証明 第1章 線形回帰 1.1 最小二乗法 1.2 重回帰 1.3 $\hat{\beta}$の分布 1.4 RSSの分布 1.5 $\hat{\beta}_j \not= 0$の仮説検定 1.6 決定係数と共線形性の検出 1.7 信頼区間と予測区間 付録 命題の証明 問題1~18 第2章 分類 2.1 ロジスティック回帰 2.2 Newton-Raphson法の適用 2.3 線形判別と二次判別 2.4 K近似法 2.5 ROC曲線 問題19~31 第3章 リサンプリング 3.1 クロスバリデーション 3.2 線形回帰の場合の公式 3.3 ブートストラップ 付録 命題の証明 問題32~39 第4章 情報量基準 4.1 情報量基準 4.2 有効推定量とFisher情報量行列 4.3 Kullback-Leibler情報量 4.4 赤池の情報量基準(AIC)の導出 付録 命題の証明 問題40~48 第5章 正則化 5.1 Ridge 5.2 劣微分 5.3 Lasso 5.4 RidgeとLassoを比較して 5.5 λの値の設定 問題49~56 第6章 非線形回帰 6.1 多項式回帰 6.2 スプライン回帰 6.3 自然なスプライン関数への回帰 6.4 平滑化スプライン 6.5 局所回帰 6.6 一般化加法モデル 付録 命題の証明 問題57~68 第7章 決定木 7.1 回帰の決定木 7.2 分類の決定木 7.3 バギング 7.4 ランダムフォレスト 7.5 ブースティング 問題69~74 第8章 サポートベクトルマシン 8.1 最適な境界 8.2 最適化の理論 8.3 サポートベクトルマシンの解 8.4 カーネルを用いたサポートベクトルマシンの拡張 付録 命題の証明 問題75~87 第9章 教師なし学習 9.1 K-meansクラスタリング 9.2 階層的クラスタリング 9.3 主成分分析 付録 プログラム 問題88~100

みんなのレビュー
まだレビューはありません
No.13
66
みんなのレビュー
まだレビューはありません
No.17
65

個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ

みんなのレビュー
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
No.19
65

最新のライブラリに対応!機械学習の基本を数式とプログラムを紐づけてしっかり学べる! Pythonプログラムを動かしながら機械学習の基礎をしっかり学べる! 【本書の目的】 人工知能関連サービスや商品開発において 機械学習の基礎知識が必要となります。 本書では数式とPythonプログラムをつなげて 機械学習の基礎をしっかり学ぶことができます。 【本書の特徴】 本書は、機械学習の原理を数式でしっかり理解し、 Pythonプログラムによってその理解を深めていくことができる書籍です。 ・数式とコードを連携して解説 ・学習内容を「要点整理」で復習 ・TensorFlow 2.7に対応 ・Python 3.9に対応 【読者が得られること】 機械学習のしくみとPythonプログラムを つなげて理解できます。 【対象読者】 機械学習の基礎を数学的な原理からプログラム実装までしっかり学びたい理工学生・エンジニア 【目次】 第 1 章 機械学習の準備 第 2 章 Pythonの基本 第 3 章 グラフの描画 第 4 章 機械学習に必要な数学の基本 第 5 章 教師あり学習:回帰 第 6 章 教師あり学習:分類 第 7 章 ニューラルネットワーク・ディープラーニング 第 8 章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第 9 章 教師なし学習 第10章 要点のまとめ 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ

みんなのレビュー
まだレビューはありません
No.21
64
みんなのレビュー
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
No.22
63

機械学習プロジェクトの上手な進め方、機械学習を活用するときに気をつけることなど。役に立つ機械学習モデルのつくり方がわかる! ★★管理職も技術者も必読!「機械学習」のやさしい活用法★★ 機械学習プロジェクトの上手な進め方、機械学習を活用するときに気をつけること、活用事例などをていねいに解説。 「機械学習を作る側」と「機械学習活用する側」との橋渡しとなる一冊! [本書で学べること] ・そもそも機械学習で何ができるのか? ・現場への適切な組み込み方法は? ・どうやって精度を保証するのか? ・実運用を見すえたときに確認すべき部分は? [主な内容]  第1章 本書の使い方 第1部 機械学習の基礎  第2章 機械学習とは何か  第3章 機械学習手法の種類と基礎  第4章 機械学習のタスク 第2部 機械学習の利活用  第5章 機械学習は一般企業でも活用できる  第6章 機械学習を現場で活用するには  第7章 機械学習の適用事例  第8章 実運用に耐えうる機械学習モデルの構築  第9章 機械学習モデルの説明性 第1章 本書の使い方 第1部 機械学習の基礎 第2章 機械学習とは何か 2.1 AI、機械学習、深層学習の違いと機械学習の概念 2.2 機械学習は近似関数を推定する作業である 2.3 データについて 第3章 機械学習手法の種類と基礎 3.1 機械学習の種類 3.2 深層学習以外の機械学習手法の種類とその基礎 3.3 深層学習の主な種類とその基礎 3.4 過学習と正則化 3.5 転移学習 第4章 機械学習のタスク 4.1 動画像系のタスク 4.2 自然言語処理・音系のタスク 4.3 異常検知のタスク 4.4 テーブルデータ系のタスク 4.5 数値計算手法の近似 第2部 機械学習の利活用 第5章 機械学習は一般企業でも活用できる 第6章 機械学習を現場で活用するには 6.1 機械学習活用プロジェクトの流れ 6.2 機械学習活用プロジェクトでうまく問題設定する 6.3 ドメイン知識をモデルに組み込む 6.4 ウェブから利用可能な資源を活用する 6.5 機械学習手法の選択やデータの質・量 6.6 機械学習情報の収集方法 6.7 論文の効率的な読み方 6.8 機械学習が抱える問題点 6.9 機械学習を活用する前に「機械学習を活用しない解」を検討する 第7章 機械学習の適用事例 7.1 商品の外観検査 7.2 建設現場の進捗確認 7.3 街路樹の密度をチェックし、植林支援をする 7.4 秘密保持契約のチェック 7.5 数値シミュレーションの近似 7.6 銃声を検知して野生動物を保護する 7.7 長期間気球を滞空させて、過疎地の通信を助ける 第8章 実運用に耐えうる機械学習モデルの構築 8.1 評価データの情報漏洩を防いで実運用時と近い評価をする 8.2 データ拡張による実運用時のばらつきを加味した学習方法 8.3 機械学習モデルが出す想定外の予測結果(短絡学習)を防ぐ対策 8.4 少ないデータで学習し、少ないデータで精度を担保する 8.5 ラベル間違いへの対応 8.6 その他利活用時に問題になりそうな事項とその対策 第9章 機械学習モデルの説明性 9.1 説明性のある機械学習モデルとは 9.2 判断根拠の説明性 9.3 偏見の可視化 9.4 不確実性の算出 9.5 説明性は役に立つのか 9.6 因果関係と相関関係

みんなのレビュー
まだレビューはありません
No.23
63

ディープラーニングを学ぶなら、「仕組み」も「プログラム」もしっかり解説している本書から! ディープラーニングの代表とも言える「畳み込みニューラルネットワーク(CNN)」を例として、その仕組みを根本から理解すること、そして、TensorFlowを用いて実際に動作するコードを動かしながら学べる書籍です。 ディープラーニングについて解説する書籍は多数発行されていますが、本書では、「きちんとニューラルネットワークの原理から理解すること」と、「その原理をどのようにコードとして書くか」の両方がバランスよく学べます。 表面的にコードを覚えるだけでは、応用力は身に付きません。根本から理解しておくことで、現場に出てからも長く使える基礎力を身に付けましょう! ※本書では、プログラムの実行環境としてGoogle Colaboratoryを利用するため、面倒な環境構築は不要です。 ※2016/9発行の『TensorFlowで学ぶディープラーニング入門』をもとに、Python3系、TensorFlow 2.0ベースに書き換えたほか、全体的に解説を見直し、修正しています。そのほか、実行環境をGoogle Colaboratoryに変更、オートエンコーダーによるアノマリー検知やDCGAN による画像生成などのトピックを追加しています。 (以下、本書の「はじめに」より抜粋・編集) 本書は、機械学習やデータ分析を専門とはしない、一般の方を対象とした書籍です。と言っても、ディープラーニングの歴史や人工知能の将来展望を語る啓蒙書ではありません。ディープラーニングの代表とも言える「畳み込みニューラルネットワーク」を例として、その仕組みを根本から理解すること、そして、TensorFlowを用いて実際に動作するコードを作成することが本書の目標です。 本書は、「TensorFlowで学ぶディープラーニング」(2016/9発行)をもとにした改訂版です。サンプルコードはTensorFlow 2.0対応のKerasで書き直しています。Kerasを用いることでコードの内容はシンプルになりました。さらに、GoogleColaboratoryを用いることで難しい実行環境のセットアップも不要になりました。 さらにまた、改訂にあたり、学習後のモデルを解釈する手法、オートエンコーダによるアノマリー検知、そして、画像生成に用いられるDCGANなど、より高度な話題も内容に含めました。 本書のゴールは、コードの背後に隠された、ニューラルネートワークを構成するさまざまなパーツの動作原理を知り、ディープラーニングの本質を理解することです。 本書では、手書き文字の認識処理を行う「畳み込みニューラルネットワーク」を例として、これを構成する1つひとつのパーツの役割を丁寧に解説しています。また、Kerasを用いることで、数式を意識することなく、ニューラルネットワークを構成するコードが書けるようになりましたが、やはり、数学的な理解も欠かすことはできません。2次元平面のデータを用いた簡単な例を通して、それぞれのパーツの背後にある「数学的な仕組み」も丁寧に解説しています。 Chapter 01 TensorFlow/Keras入門 第1章のはじめに 1-1 最小二乗法で学ぶ機械学習の基礎  1.1.1 機械学習の考え方  1.1.2 勾配降下法によるパラメーターの最適化 1-2 TensorFlowとKerasの使い方  1.2.1 実行環境の準備  1.2.2 Low-level APIによる実装例  1.2.3 Kerasによる実装例 1-3 ニューラルネットワークの役割  1.3.1 分類問題とニューラルネットワーク  1.3.2 ディープラーニングの特徴 Chapter 02 分類アルゴリズムの基礎 第2章のはじめに 2-1 ロジスティック回帰による二項分類器  2.1.1 確率を用いた誤差の評価  2.1.2 Kerasによるロジスティック回帰の実装  2.1.3 テストセットを用いた検証 2-2 ソフトマックス関数と多項分類器  2.2.1 線形多項分類器の仕組み  2.2.2 ソフトマックス関数による確率への変換 2-3 線形多項分類器による手書き文字の分類  2.3.1 MNIST データセットの利用方法  2.3.2 画像データの分類アルゴリズム  2.3.3 Kerasによる線形多項分類器の実装  2.3.4 ミニバッチと確率的勾配降下法 Chapter 03 ニューラルネットワークを用いた分類処理 第3章のはじめに 3-1 単層ニューラルネットワークの構造  3.1.1 単層ニューラルネットワークによる二項分類器  3.1.2 隠れ層が果たす役割  3.1.3 ノード数の違いによる効果 3-2 単層ニューラルネットワークによる手書き文字の分類  3.2.1 単層ニューラルネットワークを用いた多項分類器  3.2.2 TensorBoardによるトレーニングログの確認 3-3 多層ニューラルネットワークへの拡張  3.3.1 多層ニューラルネットワークの効果  3.3.2 特徴変数に基づいた分類ロジック  3.3.3 補足:パラメーターが極小値に収束する例 Chapter 04 畳み込みフィルターによる画像の特徴抽出 第4章のはじめに 4-1 畳み込みフィルターの機能  4.1.1 畳み込みフィルターの例  4.1.2 Kerasによる畳み込みフィルターの適用  4.1.3 プーリング層による画像の縮小 4-2 畳み込みフィルターを用いた画像の分類  4.2.1 特徴変数による画像の分類  4.2.2 畳み込みフィルターの動的な学習 4-3 畳み込みフィルターを用いた手書き文字の分類  4.3.1 単層CNNによる手書き文字の分類  4.3.2 動的に学習されたフィルターの確認 Chapter 05 畳み込みフィルターの多層化による性能向上 第5章のはじめに 5-1 畳み込みニューラルネットワークの完成  5.1.1 多層型の畳み込みフィルターによる特徴抽出  5.1.2 Kerasによる多層CNNの実装  5.1.3 手書き文字の認識アプリケーション 5-2 学習済みフィルターの解釈  5.2.1 フィルターの出力を最大化する画像の構成  5.2.2 予測への影響が大きい領域の検出 5-3 少し高度な話題  5.3.1 CIFAR-10(カラー写真画像)の分類に向けた拡張  5.3.2 オートエンコーダによるアノマリー検知  5.3.3 DCGAN による画像生成モデル Appendix A 「A Neural Network Playground」による直感的理解 B バックプロパゲーションによる勾配ベクトルの計算 C 数学公式

みんなのレビュー
まだレビューはありません
No.25
63
みんなのレビュー
まだレビューはありません
No.26
63

ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ! 深層学習のさまざまな課題とその対策についても詳しく解説。 ◆ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ!!◆ ・トランスフォーマー、グラフニューラルネットワーク、生成モデルなどをはじめ、各手法を大幅に加筆。 ・深層学習のさまざまな課題と、その対策についても詳しく解説。 [本書まえがきより抜粋] ないもの(=理論)ねだりをしても仕方がありません.それでも皆が研究を進めるのは,そうすることに意義があるからです.なぜうまく働くのか,なぜそうすべきか,数学的な証明はなくても,正しい説明は必ずあるはずです.それを手にできれば,目の前の課題を解決するのに,また次に進むべき道を知るうえで役に立つでしょう. そこで本書では,それぞれの方法について,今の時点で最も納得できる説明をきちんと与えることにこだわりました.名前の通った方法であっても,理屈が成り立たない,あるいは役に立たない方法や考え方については,はっきりそう書きました.著者の主観といわれても仕方がない場合もあるかもしれませんが,そのほうが有益であると信じています. また,現在の深層学習の広がりを把握できるように,定番となった問題・方法に加えて,重要だと思われる問題については,必ずしもそれほど有名でない方法も含めてなるべく網羅するようにしました.その取捨選択には,深層学習が実践的技術であることを踏まえ,実用性を最も重視しました.そこには,この間に著者が企業の実務家たちと行ってきた共同研究での経験が反映されています. [主な内容] 第1章 はじめに 第2章 ネットワークの基本構造 第3章 確率的勾配降下法 第4章 誤差逆伝播法 第5章 畳み込みニューラルネットワーク 第6章 系列データのためのネットワーク 第7章 集合・グラフのためのネットワークと注意機構 第8章 推論の信頼性 第9章 説明と可視化 第10章 いろいろな学習方法 第11章 データが少ない場合の学習 第12章 生成モデル 1章 はじめに 1.1 研究の歴史 1.2 本書の構成 2章 ネットワークの基本構造 2.1 ユニットと活性化関数 2.2 順伝播型ネットワーク 2.3 学習の概要 2.4 問題の定式化:出力層と損失関数の設計 3章 確率的勾配降下法 3.1 確率的勾配降下法 3.2 汎化性能と過剰適合 3.3 正則化 3.4 学習率の選定と制御 3.5 SGDの改良 3.6 層出力の正規化 3.7 重みの初期化 3.8 その他 4章 誤差逆伝播法 4.1 勾配計算の煩わしさ 4.2 誤差逆伝播法 4.3 自動微分 4.4 勾配消失問題 4.5 残差接続 5章 畳み込みニューラルネットワーク 5.1 単純型細胞と複雑型細胞 5.2 畳み込み 5.3 畳み込み層 5.4 プーリング層 5.5 畳み込み層の出力の正規化 5.6 推論のためのCNNの構造 5.7 入出力間の幾何学的関係 5.8 畳み込み層の一般化 5.9 アップサンプリングと畳み込み 5.10 物体カテゴリ認識への適用例 6章 系列データのためのネットワーク 6.1 系列データ 6.2 リカレントニューラルネットワーク 6.3 ゲート機構 6.4 自己回帰モデル 6.5 1次元畳み込みネットワーク 6.6 逆伝播の計算 7章 集合・グラフのためのネットワークと注意機構 7.1 集合データを扱うネットワーク 7.2 注意機構 7.3 トランスフォーマー 7.4 グラフニューラルネットワーク 8章 推論の信頼性 8.1 推論の不確かさ 8.2 不確かさの数理モデル 8.3 不確かさの予測 8.4 分布外入力の検出 8.5 敵対的事例 8.6 品質保証の試み 9章 説明と可視化 9.1 はじめに 9.2 入力による出力の微分 9.3 入力の遮蔽・挿入 9.4 中間層出力の表示 9.5 寄与度の分解 9.6 寄与度の逆伝播 9.7 可視化手法の評価 9.8 影響関数 9.9 学習内容の可視化 10章 いろいろな学習方法 10.1 距離計量学習 10.2 事例集合(マルチインスタンス)学習 10.3 クラスラベルの誤り 10.4 クラス間不均衡 10.5 継続・追加学習 10.6 知識蒸留 10.7 枝刈り 10.8 計算の量子化 10.9 ネットワーク構造探索 11章 データが少ない場合の学習 11.1 はじめに 11.2 データ拡張 11.3 転移学習 11.4 半教師あり学習 11.5 自己教師学習 11.6 マルチタスク学習 11.7 ドメイン適応・汎化 11.8 少数事例学習 11.9 能動学習 12章 生成モデル 12.1 データの生成モデル 12.2 自己符号化器 12.3 変分自己符号化器 12.4 敵対的生成ネットワーク 12.5 正規化フロー 12.6 ボルツマンマシン

みんなのレビュー
まだレビューはありません
No.27
62

最適化、確率・統計などの基本的な計算から、ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までを丁寧に解説! ◆◆数式とコードの距離が近いJuliaで一生モノの考え方を身につけよう!◆◆ 線形代数、微積分、最適化、確率・統計の基本的な計算から、 ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までをていねいに解説! [サポートページ] https://github.com/sammy-suyama/JuliaBayesBook [主な内容] 第1章 Juliaの基礎 1.1 Juliaとは 1.2 基本文法 1.3 パッケージの利用 1.4 グラフの描画 第2章 数値計算の基礎 2.1 ベクトル・行列計算 2.2 統計量の計算 2.3 統計量と確率分布のパラメータ 2.4 微分計算 2.5 関数の最適化 2.6 最適化によるカーブフィッティング 2.7 積分計算 第3章 確率計算の基礎 3.1 表を使った確率計算 3.2 式を使った確率計算 3.3 連続値における周辺分布と条件付き分布 3.4 確率的試行のシミュレーション 第4章 確率分布の基礎 4.1 確率分布とは 4.2 Juliaでの確率分布の扱い(Distributions.jl) 4.3 離散型確率分布 4.4 連続型確率分布 4.5 統計モデルの設計 第5章 統計モデリングと推論 5.1 ベルヌーイモデル 5.2 線形回帰 5.3 ロジスティック回帰モデル 第6章 勾配を利用した近似推論手法 6.1 なぜ勾配を利用するのか 6.2 ラプラス近似 6.3 ハミルトニアンモンテカルロ法 第7章 発展的な統計モデル 7.1 ポアソン回帰 7.2 階層ベイズモデル 7.3 状態空間モデル 第1章 Juliaの基礎 1.1 Juliaとは 1.2 基本文法 1.3 パッケージの利用 1.4 グラフの描画 第2章 数値計算の基礎 2.1 ベクトル・行列計算 2.2 統計量の計算 2.3 統計量と確率分布のパラメータ 2.4 微分計算 2.5 関数の最適化 2.6 最適化によるカーブフィッティング 2.7 積分計算 第3章 確率計算の基礎 3.1 表を使った確率計算 3.2 式を使った確率計算 3.3 連続値における周辺分布と条件付き分布 3.4 確率的試行のシミュレーション 第4章 確率分布の基礎 4.1 確率分布とは 4.2 Juliaでの確率分布の扱い(Distributions.jl) 4.3 離散型確率分布 4.4 連続型確率分布 4.5 統計モデルの設計 第5章 統計モデリングと推論 5.1 ベルヌーイモデル 5.2 線形回帰 5.3 ロジスティック回帰モデル 第6章 勾配を利用した近似推論手法 6.1 なぜ勾配を利用するのか 6.2 ラプラス近似 6.3 ハミルトニアンモンテカルロ法 第7章 発展的な統計モデル 7.1 ポアソン回帰 7.2 階層ベイズモデル 7.3 状態空間モデル

みんなのレビュー
まだレビューはありません
No.28
62

最短経路で平易に理解できる、今までにない入門書!「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。 最短経路で平易に理解できる、今までにない入門書! ベイズ主義機械学習(ベイズ学習)の基本原理にのっとり、「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。どこまでも分かりやすい! 【主な内容】 1 機械学習とベイズ学習 2 基本的な確率分布 3 ベイズ推論による学習と予測 4 混合モデルと近似推論 5 応用モデルの構築と推論 【機械学習スタートアップシリーズ】 本シリーズは、「機械学習ブーム」の先駆けとして2015年から刊行されている『機械学習プロフェッショナルシリーズ』の弟分的な存在を目指す、注目の新シリーズです。 「機械学習をもっと身近に、機械学習をもっとわかりやすく!」を合言葉に、より丁寧な記述で、基本的なテーマを解説していきます。 まず、以下の2点を同時に刊行いたします(^o^)/ 『これならわかる深層学習入門』瀧 雅人・著 『ベイズ推論による機械学習入門』須山 敦志・著/杉山 将・監修 第1章 機械学習とベイズ学習 機械学習とは/機械学習の代表的なタスク/機械学習の 2 つのアプローチ/確率の基本計算/グラフィカルモデル/ベイズ学習のアプローチ 第2章 基本的な確率分布 期待値/離散確率分布/連続確率分布 第3章 ベイズ推論による学習と予測 学習と予測/離散確率分布の学習と予測/1次元ガウス分布の学習と予測/多次元ガウス分布の学習と予測/線形回帰の例 第4章 混合モデルと近似推論 混合モデルと事後分布の推論/確率分布の近似手法/ポアソン混合モデルにおける推論/ガウス混合モデルにおける推論 第5章 応用モデルの構築と推論 線形次元削減/非負値行列因子分解/隠れマルコフモデル/トピックモデル/テンソル分解/ロジスティック回帰/ニューラルネットワーク

みんなのレビュー
まだレビューはありません
search