についてお探し中...

【2024年】「ディープラーニング」のおすすめ 本 152選!人気ランキング

この記事では、「ディープラーニング」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  2. Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
  3. ゼロから作るDeep Learning ❷ ―自然言語処理編
  4. PythonとKerasによるディープラーニング
  5. 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
  6. パターン認識と機械学習 上
  7. 人工知能は人間を超えるか ディープラーニングの先にあるもの (角川EPUB選書)
  8. 人工知能のアーキテクトたち ―AIを築き上げた人々が語るその真実
  9. 直感 Deep Learning ―Python×Kerasでアイデアを形にするレシピ
  10. いちばんやさしい機械学習プロジェクトの教本 人気講師が教える仕事に AI を導入する方法
他142件
No.1
100

この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。

みんなのレビュー

ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。

No.2
79

この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。

みんなのレビュー
まだレビューはありません
No.3
77

『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。

みんなのレビュー

ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる

No.4
72

本書は、ディープラーニングを一から学びたい人向けに、数学的表現を避けて実践的なコードを用いて基本概念を解説します。著者はKerasの開発者で、TensorFlowをバックエンドに使用。内容は、ディープラーニングの基礎から始まり、コンピュータビジョンや自然言語処理の応用例まで幅広くカバー。最終的には、ディープラーニングの適用可能性や限界を理解できるようになります。

みんなのレビュー
まだレビューはありません
No.5
69

この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。

みんなのレビュー
まだレビューはありません
No.6
67
みんなのレビュー

ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。

No.7
67

著者松尾豊は、日本の人工知能研究の第一人者として、最新技術「ディープラーニング」の進展とその影響を探求し、知能や人間の本質について問い直します。本書では、人工知能の歴史やブームを振り返りながら、技術の進化が人類にもたらす可能性と危機について論じています。

みんなのレビュー

AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。

No.8
64

ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン

みんなのレビュー
まだレビューはありません
No.9
64
みんなのレビュー
まだレビューはありません
No.11
63

本書は、ディープラーニングの実用化に向けた最新の動向と事例を紹介するもので、国内35社の具体例を通じてその活用方法や課題を解説しています。東京大学の松尾豊氏による技術的発展のロードマップを基に、業務効率化や新規事業創出に役立つ情報を提供。各章では、単純作業の自動化から異常検知、ロボットや自動運転技術、さらには創作業務への応用まで幅広くカバーしています。また、ビジネス活用に関するQ&Aも含まれ、企業の導入に役立つ内容となっています。

みんなのレビュー
まだレビューはありません
No.13
61

本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。

みんなのレビュー
まだレビューはありません
No.15
61

本書は、機械学習や深層学習の予備知識がない読者を対象に、理論を明快に解説する入門書です。内容は、機械学習と深層学習の基本、ニューラルネットの仕組み、勾配降下法、誤差逆伝播法、自己符号化器、畳み込みニューラルネット、再帰型ニューラルネット、ボルツマンマシン、深層強化学習など多岐にわたります。著者は、理論的な基礎を重視し、学びやすい形式で解説しています。

みんなのレビュー
まだレビューはありません
No.18
61

本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。

みんなのレビュー
まだレビューはありません
No.19
61

本書は人気シリーズの第3弾で、オリジナルのディープラーニングフレームワーク「DeZero」をゼロから作成する内容です。最小限のコードでモダンな機能を実現し、全60ステップでフレームワークを完成させます。これにより、PyTorchやTensorFlowなどの知識を深めることができます。著者は人工知能の研究開発に従事する斎藤康毅氏です。

みんなのレビュー
まだレビューはありません
No.21
60

この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。

みんなのレビュー
まだレビューはありません
No.22
60

本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。

みんなのレビュー
まだレビューはありません
No.23
60

本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」という視点から整理しています。新たに「ML Ops」や「機械学習モデルの検証」などの章が追加され、読者が直面する問題解決に役立つ内容となっています。著者は機械学習分野の専門家で、実践的な知識を提供しています。

みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

No.24
60

この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。

みんなのレビュー

「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。

No.26
58

この書籍は、人工知能プログラミングに必要な数学を基礎から優しく学べる参考書です。著者は「10秒で始める人工知能プログラミング学習サービス」の代表者で、数学に苦手意識がある人でも理解できる内容になっています。基本的な数学から微分、線形代数、確率・統計を学び、実践編では住宅価格の推定や自然言語処理、手書き数字認識などの具体的な例を通じて理解を深めます。対象読者は、AIアルゴリズムを学びたいが数学に不安がある人々です。

みんなのレビュー
まだレビューはありません
No.27
58

本書は、日本ディープラーニング協会が監修し、ディープラーニングをビジネスに活用するための実践的な知識と事例を紹介しています。特に「ディープラーニングビジネス活用アワード」の受賞プロジェクト6件を詳細にケーススタディとして取り上げています。事例には、キユーピーのAI食品原料検査装置や楽天の自動翻訳プロジェクトなどが含まれ、効果を4つのカテゴリ(商品開発、消費者対応、働き方改革、社会課題解決)に分けて説明しています。また、松尾豊理事長による「ディープラーニング技術年表」も収録されており、技術的なアドバイスが提供されています。

みんなのレビュー
まだレビューはありません
No.28
57

本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。

みんなのレビュー

Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。

Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。

No.29
57

本書『G検定 公式テキスト 第3版』は、AI時代に必携のディープラーニングに関する試験「G検定」の公式教材です。新シラバスに準拠し、日本ディープラーニング協会が監修しています。章末問題や解説が充実しており、ディープラーニングの入門書としても適しています。対象読者はG検定受験者やディープラーニングを学びたい人、事業活用を考えている人です。試験は知識問題形式で、年6回実施されます。内容はAIの基礎から応用、法律と倫理まで幅広くカバーしています。著者は中部大学の教授で、ディープラーニング分野での専門家です。

みんなのレビュー
まだレビューはありません
No.30
57
みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

No.31
57

本書は、機械学習を実践的に学ぶための教材で、scikit-learn、TensorFlow、Kerasを用いて、基礎から応用までの手法を体系的に解説しています。内容には、データ処理、モデル学習、深層学習、強化学習、コンピュータビジョン、自然言語処理などが含まれ、サンプルコードはすべてGitHubで公開され、Jupyter Notebookで試すことができます。第2版では新たに畳み込みニューラルネットワークやGANによる画像生成の説明も追加されています。機械学習を学びたいエンジニアにとって必携の一冊です。

みんなのレビュー
まだレビューはありません
No.36
57

この書籍は、AIを活用した様々な応用例を紹介しており、機械学習やディープラーニングの基礎、画像・動画処理、自然言語処理、業務効率化の方法などを学ぶことができます。また、マスク着用の判定など新しい生活様式に対応したサンプルも収録されています。著者はプログラミングや機械学習に関する多くの書籍を執筆しているクジラ飛行机氏をはじめ、専門家たちです。

みんなのレビュー
まだレビューはありません
No.37
57
みんなのレビュー
まだレビューはありません
No.39
57

本書は、ディープラーニングの理解に必要な数学を高校1年生レベルからやさしく解説し、最短コースで学べる内容です。微分、ベクトル、行列、確率などの必要最低限の数学を特製のマップで整理し、実際に動かせるコードをJupyter Notebook形式で提供します。内容は機械学習入門から始まり、理論編、実践編、発展編に分かれており、ディープラーニングの動作原理を深く理解できることを目指しています。

みんなのレビュー
まだレビューはありません
No.40
57

本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。

みんなのレビュー

データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!

No.43
57

文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答

みんなのレビュー
まだレビューはありません
No.44
56

本書は、数学が苦手な社会人や学生向けに、ディープラーニングの基本をExcelを使って学ぶ超入門書です。難しい数学を排除し、図示しやすいパターン認識を題材にすることで、簡単な操作と初歩的な数学知識だけでディープラーニングの動作原理を理解できる内容になっています。著者は涌井良幸と涌井貞美で、教育やライティングの経験を持つ専門家です。

みんなのレビュー
まだレビューはありません
No.45
56

この書籍は、深層学習に関するベストセラーの第2版で、リカレントニューラルネットワーク、GAN、深層強化学習の新章が追加され、最新のツール情報も反映されています。全体で50ページ以上増量され、物体検出やセグメンテーションの活用も強化されています。著者は山下隆義氏で、深層学習のセミナー講師としても活動しています。

みんなのレビュー
まだレビューはありません
No.46
56

本書は、AIとディープラーニングの実装が進む現代において、企業がどのようにこれらの技術をビジネスに活かしているかを解説します。著者は国内初のディープラーニング専門ベンチャーABEJAのCEO兼CTOであり、AI導入の具体的な方法や成功要件、最新事例を文系ビジネスマンにも理解できるように説明しています。目次には、AI導入の躊躇理由、ディープラーニングの原理、導入プロセス、企業の変化などが含まれています。

みんなのレビュー
まだレビューはありません
No.47
56

本書は、日本ディープラーニング協会の「ディープラーニングG検定ジェネラリスト」試験に向けたテキストと問題集で、合格に必要な知識と対策を提供します。数式を控え、わかりやすい説明で構成されており、ビジネスでのディープラーニング活用を目指す人を対象としています。内容は、AIの歴史、数学的基礎、機械学習の基礎と実装、ディープラーニングの基本と研究分野、産業展開、制度政策など多岐にわたります。著者はAIの専門家であり、実践的な学習が可能です。

みんなのレビュー
まだレビューはありません
No.49
56

本書は、プログラミング言語Python 3.6の入門書で、538本のサンプルコードと154本のPythonファイルを通じて基礎から機械学習まで学べる内容です。3つのパートに分かれており、Part 1ではPythonの環境設定、Part 2では基本的な構文やデータ構造、Part 3では科学計算や機械学習の応用を解説しています。初心者から実践者まで、確実なスキルアップを目指すことができます。著者はコンピュータ専門誌への寄稿や教材開発を行っている大重美幸氏です。

みんなのレビュー
まだレビューはありません
No.50
56

本書は、人工知能(AI)についての正しい理解を促し、ビジネス課題を機械学習や深層学習を用いて解決する方法を解説しています。AI技術をフレームワークとして活用し、実際のビジネスに役立てるための“AI的思考力”を高めることを目指しています。難しい数式やプログラミングは使わず、AIの活用方法や評価基準について具体的に説明しています。特に、AIの適用可能性を判断する力を養うことが重要とされています。著者は医療分野でのAI活用を目指す専門家です。

みんなのレビュー
まだレビューはありません
No.51
56
みんなのレビュー
まだレビューはありません
No.54
56

本書は、機械学習入門の決定版であり、初学者が効率的にスキルを身に付けるための構成になっています。ゼロから学ぶ人に適した内容で、反復練習を通じて基本的なデータ分析が自分でできる力を養います。数式の羅列ではなく、データ分析のストーリーに沿って手法を紹介し、復習用の一覧も用意されています。また、初心者が直面しがちなエラーの解決策もまとめられており、独学でも安心して学べる工夫がされています。第2版では最新のpandasに対応し、新たに「Polars入門」も追加されています。

みんなのレビュー
まだレビューはありません
No.55
56

この書籍は、AIが人類にもたらす影響について探求し、脅威と福音の両面を考察しています。著者は、AIの自律的な動きや自動化の進展を解説し、AI教育の重要性や未来の共存の可能性についても論じています。内容は、自律世界の到来やAIの役割、そして人間との関係性に焦点を当てています。著者は、技術とビジネスの専門家であり、AIの進化がもたらす社会の変革に関する洞察を提供しています。

みんなのレビュー
まだレビューはありません
No.56
55

本書は最適化手法についての入門書であり、経営学やオペレーションズリサーチだけでなく、統計的最適化や機械学習の話題も扱っています。計算機技術の進歩により、複雑な最適化問題が解決可能になった背景を踏まえ、各手法の原理や数学的背景を詳しく解説しています。内容は例題を多く用いて分かりやすく、関連する話題や注意点も随所に挿入されています。目次には数学的準備、関数の極値、最適化手法、最小二乗法、統計的最適化、線形・非線形計画法、動的計画法が含まれています。著者は岡山大学の金谷健一教授です。

みんなのレビュー

内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊

No.57
55
みんなのレビュー
まだレビューはありません
No.60
54
みんなのレビュー
まだレビューはありません
No.62
54

本書は、日本ディープラーニング協会が実施する「ディープラーニングG検定」の法律・倫理分野に特化したテキストで、AI関連の法律や倫理を平易に解説しています。演習問題には過去の検定問題が含まれており、AI開発者やビジネスでAIを活用する人々に役立つ内容です。目次は導入、AIに関する法律と契約、AI倫理とガバナンスの3章から構成され、各法律や倫理の重要事項が詳述されています。

みんなのレビュー
まだレビューはありません
No.63
54
みんなのレビュー
まだレビューはありません
No.65
54

本書は、金融、流通、製造、インフラなど8業界36業種におけるAI導入事例を解説し、活用分野や親和性について鳥瞰図で示しています。豊富な実例を通じてビジネスアイデアの創出を促し、実装やトライアルのノウハウも提供。各業種ごとに具体的な解説があり、AIの実用性や将来可能性を探る手助けとなります。購入者特典として鳥瞰図のダウンロードも可能です。著者はAIとデータ分析の専門家で、実績豊富です。

みんなのレビュー
まだレビューはありません
No.70
54
みんなのレビュー
まだレビューはありません
No.71
54
みんなのレビュー
まだレビューはありません
No.73
54

本書は、人工知能(AI)を学びたい初心者向けの入門書であり、特にエンジニアでない中高生や文系の大学生、ビジネスパーソンに向けて分かりやすくAIの基礎知識とビジネス活用法を解説しています。著者は人気講師で、初心者にも理解しやすい内容に配慮しています。書籍は3部構成で、基礎編ではAIの基本を、ビジネス編では業界別の活用事例と注意点、技術編ではAIの仕組みと最新技術を紹介しています。これにより、AIの本質や活用方法についての理解を深めることができます。

みんなのレビュー
まだレビューはありません
No.75
54

この書籍は、ガウス過程に関する日本初の入門書であり、ベイズ的回帰モデルの柔軟性を解説しています。内容は線形回帰から始まり、ガウス過程の原理や教師なし学習、実応用に関する最新の話題も取り上げています。各章では、ガウス過程の基本概念、計算法、適用例などが詳しく説明されています。著者は統計や情報科学の専門家です。

みんなのレビュー
まだレビューはありません
No.77
54

生成モデル編

みんなのレビュー
まだレビューはありません
No.78
54

このビジネス書は、機械学習やディープラーニングの基本概念からビジネスチャンスまでを図解でわかりやすく解説し、法律的なリスクについても弁護士が詳しく説明しています。内容は、人工知能と共創するビジネスの未来、自動運転技術、ドローンビジネス、画像認識、マッチングビジネス、フィンテックなど幅広いテーマをカバーしています。著者は法律とビジネスの専門家で、企業の戦略立案やM&Aに関する豊富な経験を持っています。

みんなのレビュー
まだレビューはありません
No.79
54

世界のトップ企業50はAIをどのように活用しているか?

バーナード・マー
ディスカヴァー・トゥエンティワン
みんなのレビュー
まだレビューはありません
No.81
54

この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。

みんなのレビュー

デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!

No.82
56
みんなのレビュー

@@Tvctw

����%2527%2522\'\"

No.83
54
みんなのレビュー
まだレビューはありません
No.84
56

線形代数の意味と面白さをゼロから学ぶ一冊! ゼロから学ぶためのアイディアを盛りだくさん入れわかり易くした。 はじめが、だいじ! 寝ころんで読める脳に心地よい線形代数入門。「行列の掛け算は、なぜあんな変な掛け方をするの?」といった誰もが抱く疑問を、ことごとく氷解させる超入門書! はじめが、だいじ! 寝ころんで読める脳に心地よい線形代数入門。 「行列の掛け算は、なぜあんな変な掛け方をするの? 」 といった誰もが抱く疑問を、ことごとく氷解させる超入門書! 肩のこらない優しい説明 (1)具体的なイメージがつかめるようにした。 (2)算数から大学レベルの数学へすんなり移行できるようにした。 (3)ミステリー仕立ての会話で息抜きを。 (4)簡単な練習問題で知識の漏えいを防止。 (5)ストーリーマンガを読むような面白さ。 ●1章 行列式とは要するに面積のことなのだ 1.1.ベクトルってなんだろう 1.2.1次独立とはこんな意味 1.3.いよいよ行列式さっそうと登場 ●2章 3次元以上の行列式を征服する 2.1.3次元のベクトル 2.2.いよいよ神秘の4次元へ ●3章 直交する世界~内積と外積 3.1.まざまざと知る内積の威力と魅力 3.2.外積が面白いほどわかる! 3.3.神さまの仕掛けを掘り起こす ●4章 線形変換のココロ 4.1.1次変換のこころを探る 4.2.行列の掛け算はなぜあんなふうなのか ●5章 逆行列のひみつ 5.1.単位行列はビップなのである 5.2.行列の1次方程式を解くには 5.3.逆行列に秘められた意味 5.4.行列式の乗法公式は美しい 5.5.転置の定理の証明を完成しよう ●6章 固有値を「体感」する 6.1.固有値はいろいろ大切なのである 6.2.対称行列のひみつ 6.3.固有値の応用でグランドフィナーレ

みんなのレビュー
まだレビューはありません
No.85
54

本書は、機械学習の解釈性とその重要性に焦点を当て、特にブラックボックスモデルの理解を助ける手法を紹介しています。著者は、解釈性を高めるための4つの手法(PFI、PD、ICE、SHAP)を説明し、実務での適用方法や注意点を解説します。具体的には、線形回帰モデルを通じて解釈性を理解し、機械学習モデルの振る舞いを説明できるようになることを目指します。また、実データ分析を通じて手法を実装することが可能です。著者は、機械学習プロジェクトに従事する経験を持つ専門家です。

みんなのレビュー
まだレビューはありません
No.87
56
みんなのレビュー
まだレビューはありません
No.88
53

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.92
56

自社のシステムに人工知能の導入を検討している人が、人工知能システムの開発および運用・保守の一連のプロセスを把握できる。 自社システムに人工知能を導入したいときに読む本! 機械学習をはじめとする人工知能への期待は増加していますが、 人工知能が搭載されたシステムを開発するプロジェクトマネージャの数は足りておらず、その数は今後さらに必要になっていきます。 また、大規模システムに人工知能が入るようになっていくと、それを運用・保守する仕事も必要となります。 大規模なシステムになるほど、「開発工程において何をするのか」を規定することが重要であり、 人工知能が搭載されたシステムの開発で行うことを体系的に理解しなければなりません。 本書では、人工知能システムを企画・開発し、運用・保守したい人向けに、 企画から運用までの一連のプロセスのノウハウを解説します。 【本書のポイント】 ・人工知能システムの開発を行うエンジニアやプロマネ向けのノウハウ集 ・人工知能システムの企画書や開発計画書が書けるようになる ・人工知能のトライアルを計画・実施できるようになる ・人工知能システムの開発および運用・保守の一連のプロセスを把握できる Chapter1 実用化されつつある人工知能 人工知能の定義 人工知能の歴史 人工知能の利用用途 認識の具体例 分析の具体例 対処の具体例 Chapter2 通常のシステムと人工知能システムの開発プロセスの違い 人工知能システムの開発プロセス 企画フェーズでの特徴 トライアルフェーズでの特徴 開発フェーズでの特徴 運用・保守フェーズでの特徴 Chapter3 人工知能システムの企画 目的の設定 システム構成の検討 業務フローの作成 データ選び スケジュール検討 運用・保守方針の検討 Chapter4 人工知能プロジェクトのトライアル トライアルのプロセス 分析内容定義 データ観察 モデル設計 データの加工 結果の評価(1)-評価指標の決定 結果の評価(2)-精度の評価 結果の評価(3)-解釈性の評価 結果の評価(4)-過学習度合いの評価 結果の評価(5)-CASE STYDYでの評価例 Chapter5 人工知能システムの開発 開発フェーズのプロセス要件定義工程(1)-計画作りー 要件定義工程(2)ー精度の確認ー 要件定義工程(3)ーデータ量の決定ー 要件定義工程(4)ー更新方法の決定ー 要件定義工程(5)ー学習データが少ないときの対応方法 要件定義工程(6)ー異常値処理方法の決定 設計工程 テスト工程 Chapter6 人工知能システムの運用・保守 人工知能を見守る 人工知能を育てる(1)-自動再学習ー 人工知能を育てる(2)-忘れさせるー 人工知能を育てる(3)-新しい知識を教えるー 人工知能と人の協調 付録 提案依頼書 開発提案書 トライアル分析提案書 トライアル分析報告書 WBS 機能要件定義書・非機能要件定義書 要件定義のためのデータ分析結果報告書

みんなのレビュー
まだレビューはありません
No.93
53
みんなのレビュー
まだレビューはありません
No.96
56

今の人工知能(AI)を正しく理解して活用し 導入効果を最大化するAIビジネス書の決定版 AIブームはとどまるところを知らず、企業や組織はAI活用の実践フェーズに突入しつつあります。 一方で、AIに関する様々な誤解がいまだに蔓延しており、深層学習(ディープラーニング)をはじめとする「今のAI」をどうすればビジネスに生かせるかの理解も進んでいません。 AIは非常に大きな可能性を秘めています。今のAIを効果的に活用すれば生産性やROI(投資対効果)の劇的な改善につながります。 一方でAIは癖のある道具であり、使いこなすには正しい理解と十分なノウハウが欠かせません。 本書は30年以上にわたりAIの開発や導入・活用を手掛けてきた筆者が、AIのビジネス活用に必要なすべてを具体的に解き明かす待望の一冊です。 今のAIで何がどこまでできるのかにはじまり、AI活用の進め方や評価方法、データを確保する手順、ハードやソフトの選び方、人材育成のやり方までを豊富な実例で具体的に説明します。 今がAI導入の絶好のチャンス。ここで決断しないと、国内外のライバルに後れを取ることになりかねません。 自社のAI活用に取り組むIT部門や経営企画部門、業務部門、顧客企業のAI活用を支援するベンダーやコンサルタントなど、AI活用に関わる人必携の一冊です。 ≪第1章 今のAIで何ができるか/できないのか≫ AIに関する「よくある誤解」 天文学的なデータ量・計算量を駆使する囲碁AI 「子供の知能」をいかに生かすか 画像監視が有用なビジネス領域を考える 深層学習は「生データコンピューティング」 AIを三つの軸で分類 深層学習はどのように特徴を抽出するのか 「パターン認識」はAIの目や耳 深層学習による機械翻訳が圧勝した理由 「強いAI」の誕生は早くて22世紀? 指数関数の本当の怖さ 知識量は高々2次曲線的に増える  【コラム】強いAI、汎用AI(AGI)の研究は科学か? 今の深層学習を活用しない手はない 深層学習と他の方式の組み合わせも有用 ≪第2章 深層学習活用の基本的な流れ≫ AI活用に欠かせない目標設定 同じ評価データを利用可能にする 精度指標は「適合率」と「再現率」 前提となる正解が一つとは限らない 適合率と再現率、どちらを重視するか? アマチュアとプロで求める精度は異なる 深層学習の精度評価実験は非常に簡単 共通の特徴と多彩な違いを反映した正解データを用意 開発環境を使ったデータ学習の流れ オーバーフィッティングに注意 ≪第3章 目標精度評価・活用の実際≫ ◆例1 車載カメラで危険映像候補を認識 危険運転の分類から自動運転の課題が分かる コスト削減効果は単純計算で7200倍 交通標識のAI対応やRFID化も必要に ◆例2 日本語OCR(文字認識) ◆例3 希少がんなどの病理診断を支援 精度目標の設定と予算見積もりは「鶏と卵」 自動運転は様々な観点での総合評価が必要 テスラ車の事故はなぜ起こったのか 事前の期待値を考慮したサービス評価が大切 実務フローの構想で有用な「取り違え行列」 確率値付きの判定結果で分岐条件を精密化 確信度に応じて処理を場合分け 検体や医療機関ごとに最適な精度を設定 AIの揚げ足取りをする意味 対話ボットの精度をどう評価するか 「対話成立度合い」で精度を定量評価 ITILを参考に業務フローを改善 例外的事態のデータを機械学習させて活用 ≪第4章 具体例で見るAI導入の実際≫ 企業はデジタル・エンタープライズに進化 AIを実装し、APIとして公開 AI導入の概略と社内体制  【コラム】情シスはAIの担当になれるか 正解データをうまく作るための留意点 アノテーターによるラベル付けの実際 少しずつ異なる正解データを「水増し」する 深層学習の導入は辛抱強く 運用時のトータルシステム構成を描く GPUを選ぶ:現状はエヌビディア一択 ハードウエア機器を選ぶ:性能は10数年前の最先端スパコン以上 メインメモリーの容量にも注意  【コラム】小型化の動きが加速  ~GPU内蔵ノートPCやUSBアクセラレータ GPUクラウドという選択  【コラム】タダほど高いものはない?  無料のデータ学習サービスの実用性 深層学習の仕組みは多彩 主要な深層学習フレームワークの特徴と選び方 多種類のネットワーク構造の中でどれを選ぶか? プログラム言語はほぼPython一択 既成のAIリソースの活用を意識する 完成したAIをアプリケーション化、API化する 作ったAPIを世界に公開する 様々なセキュリティ対策、プライバシーへの配慮 目には目を、AIにはAIを AI導入支援企業側を守る不正コピー対策 ソースコードをあえて一部開示する提供方法も ≪第5章 AI導入を支える人材が持つべきスキル≫ ユーザー企業はAI人材をどう確保するか ユーザー企業のマネジャーが心得るべきポイント AI時代に必要なのはシャーロック・ホームズのような思考力 AI要員に求められる資質と専門分野 旧来のIT知識が足を引っ張る恐れも 「正解データの整備」が開発作業の中心に APIエコノミーでマッシュアップの達人がより大切に AI要員に欠かせない高いコミュニケーション能力 知識は急速に陳腐化する 知識労働から知能労働へ 知識はタダ同然になっていく AIと人間の役割分担を考える 人間はビッグデータ無しにそこそこの確度で推論できる 異なる専門家のコラボを実現する「ペア要求開発」 AIプロジェクト推進の原動力となる人材 熟練職人芸をAIに移植した後の空洞化対策 ≪第6章 AIの産業応用で今後留意すべきこと≫ ビッグデータの役割はより重要に AIを利用して人々がデータに圧倒されないようにしたい 現在のAIにも存在する「知識獲得ボトルネック」 データの整備や付加価値化にこそAIを活用すべき 正解データの整備・収集時の留意点 日本はAI導入の「伸びしろ」が大きい 店員と同じように接客できるAIが登場する? AI研究者にとって人文科学や哲学は重要 ベーシックインカムでは問題は解決しない AGI=汎用AIを道具として扱う

みんなのレビュー
まだレビューはありません
No.101
53

この書籍は、データサイエンスにおける統計学と機械学習の52の基本概念を簡潔に説明し、必要な数式やグラフ、RとPythonのコードを提供します。データの分類、分析、モデル化、予測において、統計学の重要な要素を明確にし、効率的に学ぶことができます。改訂版ではPythonにも対応し、コードはGitHubからダウンロード可能です。著者はデータサイエンスの専門家であり、幅広い経験を持っています。

みんなのレビュー
まだレビューはありません
No.106
53

爆発的かつ非体系的に発展したAI。その基盤となる核心的アイデア、研究・開発の歴史、可能性と限界を平易に語る人工知能入門。文庫オリジナル。 爆発的かつ非体系的に発展したAI。その基盤となる核心的アイデア、研究・開発の歴史、可能性と限界を平易に語る人工知能入門。文庫オリジナル。

みんなのレビュー
まだレビューはありません
No.107
56

AI白書 2019

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA

日本での人工知能の社会実装は間に合うのか? ▼国内と海外の人工知能の最新動向がすべてわかる、網羅的な白書の最新版  “ディープラーニング”(深層学習)の登場以降、大変な盛り上がりとなっている人工知能(AI)。すでに研究段階から、社会への実装へとステージが進んでいて、一過性のブームでないことは明らかです。  しかし、海外、とくに米国・中国に比べて、AIの社会実装という面では、日本は大きく遅れをとっていると言われています。そして技術面においても、先行しており、かつ人的にも資金的にも大きなリソースを投入している米中に、日本が追いつくことは容易ではありません。これからの産業構造に大きな変革をもたらすであろうAIに、日本企業は、社会は、この先どう向き合っていけばいいのでしょうか。  本書は、AIの基礎的な技術解説から、国内外の多様な先行導入事例、制度・政策面での取り組み、中国のAI動向データや企業経営者の意識調査結果まで、AIにまつわる幅広い話題を網羅して収録しております。企業や社会がAIを実装するにあたってのひとつの指針として、本書をご活用いただけます。 日本はAIの技術面で、また実際の社会実装面で、世界と、特に米中と比べて進んでいるのか、遅れているのか? その実情はどのようになっているのか。技術から利用動向、制度政策に至るまで、AIのすべてを解説。 ▼最新技術から利用動向、制度や政策まで、関連する話題を網羅 本白書は、大きく5つの章から構成されます。 □第1章 AIが壊すもの、創るもの  ・対談 冨山和彦(経営共創基盤CEO)×中島秀之(本誌編集委員長)  ・対談 尾原和啓(ITジャーナリスト)×松尾 豊(本誌編集委員) □第2章 技術動向  ・ディープラーニング、自然言語処理、身体性とロボティクス等 □第3章 利用動向  ・国内、海外の利用動向、AI市場規模 □特集 データで見る中国のAI動向 □資料 企業におけるAI利用動向アンケート調査 □第4章 制度政策動向  ・知的財産、AIに関する原則、ガイドライン、国内外の政策動向等 □第5章 AIの社会実装課題と対策  ・社会実装に係る課題調査、社会実装推進の方向性等

みんなのレビュー
まだレビューはありません
No.108
54
みんなのレビュー

初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。

No.110
54
みんなのレビュー
まだレビューはありません
No.114
53

本書は、AI社会における職業の不安を解消し、文系の人がAIを活用してキャリアアップするための実践トレーニング本です。専門用語を最小限に抑え、多様な業種別事例を通じてAIとの共働きスキルを身につける方法を紹介しています。内容は、AI社会での職の保持、文系向けのAIキャリア、AIの基本理解、企画力の向上、業種別事例の紹介などを含んでおり、特に文系のAI人材が社会に与える影響に焦点を当てています。著者はAIビジネスの推進に取り組む専門家です。

みんなのレビュー

ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。

No.117
56

ロボット・人工知能の進展がもたらす社会の変化に期待が高まる一方で,その悪影響も懸念されている。本書は,現在生起しつつある問題から近未来に起きうる問題までを視野に入れ,法学からの知見を提示するものである。 第1章 ロボット・AIと法をめぐる動き(宍戸常寿) 第2章 ロボット・AIと法政策の国際動向(工藤郁子) 第3章 ロボット・AIと自己決定する個人(大屋雄裕) 第4章 ロボット・AIは人間の尊厳を奪うか?(山本龍彦) 第5章 AI・ロボットの行政規制(横田明美) 第6章 AIと契約(木村真生子) 第7章 自動運転車と民事責任(後藤元) 第8章 ロボットによる手術と法的責任(弥永真生) 第9章 ロボット・AIと刑事責任(深町晋也) 第10章 AIと刑事司法(笹倉宏紀) 第11章 ロボット・AIと知的財産権(福井健策) 第12章 ロボット兵器と国際法(岩本誠吾)

みんなのレビュー
まだレビューはありません
No.118
54
みんなのレビュー
まだレビューはありません
No.119
56
みんなのレビュー

ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!

No.120
54
みんなのレビュー

Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。

No.123
54

人工知能 人工知能と世界の見方 人工知能と社会

みんなのレビュー
まだレビューはありません
No.126
56

ディープラーニングの知識を測る検定試験(G検定)の公式テキスト登場! ディープラーニングの知識を測る検定試験(G検定)の「公式テキスト」登場! 【本書の特徴】 1)試験運営団体である「日本ディープラーニング協会」が執筆。 2)各章末には、練習問題つき。試験勉強に最適。 3)最新シラバス「JDLA Deep Learning for GENERAL 2018」に完全準拠。 4)ディープラーニングについて最新事情も踏まえ学ぶことができる。 【対象読者】 ・「ディープラーニング G検定(ジェネラリスト検定)」を受験しようと思っている人 ・ディープラーニングについてこれから広く学びたい人 ・ディープラーニングを事業活用しようと思っている人 【G検定とは】 ・目的:ディープラーニングを事業に活かすための知識を有しているかを検定する ・受験資格制限:なし ・試験概要:120分、知識問題(多肢選択式)、オンライン実施(自宅受験) ・出題問題:シラバスより出題 ・日程:公式サイトにて公表 はじめに 試験の概要 会員特典データのご案内 第1章 人工知能(AI)とは  1-1 人工知能(AI)とは  1-2 人工知能研究の歴史  章末問題 第2章 人工知能をめぐる動向  2-1 探索・推論  2-2 知識表現  2-3 機械学習・深層学習  章末問題 第3章 人工知能分野の問題  3-1 人工知能分野の問題  章末問題 第4章 機機械学習の具体的手法  4-1 代表的な手法  4-2 手法の評価  章末問題 第5章ディープラーニングの概要  5-1 ニューラルネットワークとディープラーニング  5-2 ディープラーニングのアプローチ  5-3 ディープラーニングを実現するには  章末問題 第6章 ディープラーニングの手法  6-1 活性化関数  6-2 学習率の最適化  6-3 更なるテクニック  6-4 CNN:畳み込みニューラルネットワーク  6-5 RNN:リカレントニューラルネットワーク  6-6 深層強化学習  6-7 深層生成モデル  章末問題 第7章 ディープラーニングの研究分野  7-1 画像認識分野  7-2 自然言語処理分野  7-3 音声認識  7-4 強化学習(ロボティクス)  章末問題 第8章 ディープラーニングの応用に向けて(1)産業への応用  8-1 ものづくり領域における応用事例  8-2 モビリティ領域における応用事例  8-3 医療領域における応用事例  8-4 介護領域における応用事例  8-5 インフラ・防犯・監視領域における応用事例  8-6 サービス・小売・飲食店領域における応用事例  8-7 その他領域における応用事例  8-8 (参考)第7章との関連マトリクス  章末問題 第9章 ディープラーニングの応用に向けて(2)法律・倫理・現行の議論  9-1 AIと社会  9-2 プロダクトを考える  9-3 データを集める  9-4 データを加工・分析・学習させる  9-5 実装・運用・評価する  9-6 クライシス・マネジメントをする  章末問題

みんなのレビュー
まだレビューはありません
No.127
54

強化学習編

みんなのレビュー

強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。

No.128
54

FINAL FANTASY XV の人工知能 - ゲームAIから見える未来

株式会社スクウェア・エニックス『FFXV』AIチーム
ボーンデジタル
みんなのレビュー
まだレビューはありません
No.129
53

グラフ深層学習

ヤオ マー/ジリアン タン
プレアデス出版
みんなのレビュー
まだレビューはありません
No.130
56
みんなのレビュー

データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!

No.133
53

AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来

みんなのレビュー
まだレビューはありません
No.135
54
みんなのレビュー
まだレビューはありません
No.139
54

人工知能―――機械といかに向き合うか (Harvard Business Review Press)

DIAMONDハーバード・ビジネス・レビュー編集部
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.141
56
みんなのレビュー

日本のデータサイエンティスト第一人者である河本薫さんの書籍。現場にどうやってデータサイエンスを浸透していくか、組織としてどうやって価値ある分析アウトプットを出すことができるかが学べる。

No.145
53
みんなのレビュー
まだレビューはありません
No.146
54
みんなのレビュー
まだレビューはありません
No.148
53

本書は、ビジネス書グランプリや大賞を受賞した著者による現代の変化を分析し、AIとデータの発展がもたらす影響について論じています。読者は、社会の変化、企業の戦略、教育のあり方など多岐にわたる問いに対する答えを見つけることができます。著者は、建設的な未来の創造を目指し、ファクトベースでの現状分析を行い、ビジネス、教育、政策などの領域における具体的なアプローチを提案しています。

みんなのレビュー

ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。

search