【2024年】「tensorflow」のおすすめ 本 117選!人気ランキング
- scikit-learn、Keras、TensorFlowによる実践機械学習 第2版
- PythonとKerasによるディープラーニング
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
- TensorFlow2 TensorFlow & Keras対応 プログラミング実装ハンドブック
- TensorFlowとKerasで動かしながら学ぶ ディープラーニングの仕組み ~畳み込みニューラルネットワーク徹底解説~ (Compass Booksシリーズ)
- Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
- 人工知能は人間を超えるか ディープラーニングの先にあるもの (角川EPUB選書)
- TensorFlowではじめるDeepLearning実装入門 (impress top gear)
- TensorFlowで学ぶディープラーニング入門 ~畳み込みニューラルネットワーク徹底解説~
本書は、機械学習を実践的に学ぶための教材で、scikit-learn、TensorFlow、Kerasを用いて、基礎から応用までの手法を体系的に解説しています。内容には、データ処理、モデル学習、深層学習、強化学習、コンピュータビジョン、自然言語処理などが含まれ、サンプルコードはすべてGitHubで公開され、Jupyter Notebookで試すことができます。第2版では新たに畳み込みニューラルネットワークやGANによる画像生成の説明も追加されています。機械学習を学びたいエンジニアにとって必携の一冊です。
本書は、ディープラーニングを一から学びたい人向けに、数学的表現を避けて実践的なコードを用いて基本概念を解説します。著者はKerasの開発者で、TensorFlowをバックエンドに使用。内容は、ディープラーニングの基礎から始まり、コンピュータビジョンや自然言語処理の応用例まで幅広くカバー。最終的には、ディープラーニングの適用可能性や限界を理解できるようになります。
この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
本書は、ニューラルネットワークの理論とディープラーニングの実装を解説した入門書で、PythonやKeras、TensorFlow、PyTorchを使用しています。特に自然言語処理や時系列データ処理に焦点を当て、新しい手法やモデルを詳しく説明しています。内容は、数学の基礎から始まり、ニューラルネットワーク、ディープニューラルネットワーク、リカレントニューラルネットワーク(RNN)とその応用までを網羅しています。著者は巣籠悠輔で、実務経験を持つ専門家です。
この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。
著者松尾豊は、日本の人工知能研究の第一人者として、最新技術「ディープラーニング」の進展とその影響を探求し、知能や人間の本質について問い直します。本書では、人工知能の歴史やブームを振り返りながら、技術の進化が人類にもたらす可能性と危機について論じています。
ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン
本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。
本書は、ディープラーニングの実用化に向けた最新の動向と事例を紹介するもので、国内35社の具体例を通じてその活用方法や課題を解説しています。東京大学の松尾豊氏による技術的発展のロードマップを基に、業務効率化や新規事業創出に役立つ情報を提供。各章では、単純作業の自動化から異常検知、ロボットや自動運転技術、さらには創作業務への応用まで幅広くカバーしています。また、ビジネス活用に関するQ&Aも含まれ、企業の導入に役立つ内容となっています。
この書籍は、人工知能プログラミングに必要な数学を基礎から優しく学べる参考書です。著者は「10秒で始める人工知能プログラミング学習サービス」の代表者で、数学に苦手意識がある人でも理解できる内容になっています。基本的な数学から微分、線形代数、確率・統計を学び、実践編では住宅価格の推定や自然言語処理、手書き数字認識などの具体的な例を通じて理解を深めます。対象読者は、AIアルゴリズムを学びたいが数学に不安がある人々です。
『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。
本書は、機械学習や深層学習の予備知識がない読者を対象に、理論を明快に解説する入門書です。内容は、機械学習と深層学習の基本、ニューラルネットの仕組み、勾配降下法、誤差逆伝播法、自己符号化器、畳み込みニューラルネット、再帰型ニューラルネット、ボルツマンマシン、深層強化学習など多岐にわたります。著者は、理論的な基礎を重視し、学びやすい形式で解説しています。
本書は、数学が苦手な社会人や学生向けに、ディープラーニングの基本をExcelを使って学ぶ超入門書です。難しい数学を排除し、図示しやすいパターン認識を題材にすることで、簡単な操作と初歩的な数学知識だけでディープラーニングの動作原理を理解できる内容になっています。著者は涌井良幸と涌井貞美で、教育やライティングの経験を持つ専門家です。
この書籍は、深層学習に関するベストセラーの第2版で、リカレントニューラルネットワーク、GAN、深層強化学習の新章が追加され、最新のツール情報も反映されています。全体で50ページ以上増量され、物体検出やセグメンテーションの活用も強化されています。著者は山下隆義氏で、深層学習のセミナー講師としても活動しています。
本書は、AIとディープラーニングの実装が進む現代において、企業がどのようにこれらの技術をビジネスに活かしているかを解説します。著者は国内初のディープラーニング専門ベンチャーABEJAのCEO兼CTOであり、AI導入の具体的な方法や成功要件、最新事例を文系ビジネスマンにも理解できるように説明しています。目次には、AI導入の躊躇理由、ディープラーニングの原理、導入プロセス、企業の変化などが含まれています。
本書は、プログラミング言語Python 3.6の入門書で、538本のサンプルコードと154本のPythonファイルを通じて基礎から機械学習まで学べる内容です。3つのパートに分かれており、Part 1ではPythonの環境設定、Part 2では基本的な構文やデータ構造、Part 3では科学計算や機械学習の応用を解説しています。初心者から実践者まで、確実なスキルアップを目指すことができます。著者はコンピュータ専門誌への寄稿や教材開発を行っている大重美幸氏です。
本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」という視点から整理しています。新たに「ML Ops」や「機械学習モデルの検証」などの章が追加され、読者が直面する問題解決に役立つ内容となっています。著者は機械学習分野の専門家で、実践的な知識を提供しています。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、人工知能(AI)についての正しい理解を促し、ビジネス課題を機械学習や深層学習を用いて解決する方法を解説しています。AI技術をフレームワークとして活用し、実際のビジネスに役立てるための“AI的思考力”を高めることを目指しています。難しい数式やプログラミングは使わず、AIの活用方法や評価基準について具体的に説明しています。特に、AIの適用可能性を判断する力を養うことが重要とされています。著者は医療分野でのAI活用を目指す専門家です。
本書は、日本ディープラーニング協会が監修し、ディープラーニングをビジネスに活用するための実践的な知識と事例を紹介しています。特に「ディープラーニングビジネス活用アワード」の受賞プロジェクト6件を詳細にケーススタディとして取り上げています。事例には、キユーピーのAI食品原料検査装置や楽天の自動翻訳プロジェクトなどが含まれ、効果を4つのカテゴリ(商品開発、消費者対応、働き方改革、社会課題解決)に分けて説明しています。また、松尾豊理事長による「ディープラーニング技術年表」も収録されており、技術的なアドバイスが提供されています。
本書は、理解しやすいコードを書くための方法を紹介しています。具体的には、名前の付け方やコメントの書き方、制御フローや論理式の単純化、コードの再構成、テストの書き方などについて、楽しいイラストを交えて説明しています。著者はボズウェルとフォシェで、須藤功平氏による日本語版解説も収録されています。
本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。
本書は、日本ディープラーニング協会が実施する「ディープラーニングG検定」の法律・倫理分野に特化したテキストで、AI関連の法律や倫理を平易に解説しています。演習問題には過去の検定問題が含まれており、AI開発者やビジネスでAIを活用する人々に役立つ内容です。目次は導入、AIに関する法律と契約、AI倫理とガバナンスの3章から構成され、各法律や倫理の重要事項が詳述されています。
本書は、金融、流通、製造、インフラなど8業界36業種におけるAI導入事例を解説し、活用分野や親和性について鳥瞰図で示しています。豊富な実例を通じてビジネスアイデアの創出を促し、実装やトライアルのノウハウも提供。各業種ごとに具体的な解説があり、AIの実用性や将来可能性を探る手助けとなります。購入者特典として鳥瞰図のダウンロードも可能です。著者はAIとデータ分析の専門家で、実績豊富です。
この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。
線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。
本書『G検定 公式テキスト 第3版』は、AI時代に必携のディープラーニングに関する試験「G検定」の公式教材です。新シラバスに準拠し、日本ディープラーニング協会が監修しています。章末問題や解説が充実しており、ディープラーニングの入門書としても適しています。対象読者はG検定受験者やディープラーニングを学びたい人、事業活用を考えている人です。試験は知識問題形式で、年6回実施されます。内容はAIの基礎から応用、法律と倫理まで幅広くカバーしています。著者は中部大学の教授で、ディープラーニング分野での専門家です。
本書は、人工知能(AI)を学びたい初心者向けの入門書であり、特にエンジニアでない中高生や文系の大学生、ビジネスパーソンに向けて分かりやすくAIの基礎知識とビジネス活用法を解説しています。著者は人気講師で、初心者にも理解しやすい内容に配慮しています。書籍は3部構成で、基礎編ではAIの基本を、ビジネス編では業界別の活用事例と注意点、技術編ではAIの仕組みと最新技術を紹介しています。これにより、AIの本質や活用方法についての理解を深めることができます。
この書籍は、ガウス過程に関する日本初の入門書であり、ベイズ的回帰モデルの柔軟性を解説しています。内容は線形回帰から始まり、ガウス過程の原理や教師なし学習、実応用に関する最新の話題も取り上げています。各章では、ガウス過程の基本概念、計算法、適用例などが詳しく説明されています。著者は統計や情報科学の専門家です。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、機械学習の解釈性とその重要性に焦点を当て、特にブラックボックスモデルの理解を助ける手法を紹介しています。著者は、解釈性を高めるための4つの手法(PFI、PD、ICE、SHAP)を説明し、実務での適用方法や注意点を解説します。具体的には、線形回帰モデルを通じて解釈性を理解し、機械学習モデルの振る舞いを説明できるようになることを目指します。また、実データ分析を通じて手法を実装することが可能です。著者は、機械学習プロジェクトに従事する経験を持つ専門家です。
本書は、日常生活で広く使われる人工知能(AI)に焦点を当て、特に機械学習と深層学習の基礎を解説した入門書です。数式を使わずに図や写真を多用して、必要な概念や用語を網羅的に説明します。内容は、Pythonや主要なツール・ライブラリ(TensorFlow、PyTorchなど)の基本、実践的なレシピ、Pythonによるウェブサーバの構築に関する章で構成されています。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
この書籍は、AIを活用した様々な応用例を紹介しており、機械学習やディープラーニングの基礎、画像・動画処理、自然言語処理、業務効率化の方法などを学ぶことができます。また、マスク着用の判定など新しい生活様式に対応したサンプルも収録されています。著者はプログラミングや機械学習に関する多くの書籍を執筆しているクジラ飛行机氏をはじめ、専門家たちです。
本書は、AI社会における職業の不安を解消し、文系の人がAIを活用してキャリアアップするための実践トレーニング本です。専門用語を最小限に抑え、多様な業種別事例を通じてAIとの共働きスキルを身につける方法を紹介しています。内容は、AI社会での職の保持、文系向けのAIキャリア、AIの基本理解、企画力の向上、業種別事例の紹介などを含んでおり、特に文系のAI人材が社会に与える影響に焦点を当てています。著者はAIビジネスの推進に取り組む専門家です。
AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
本書は、自然言語処理を初歩から学べる入門書で、プログラミング経験のある開発者を対象としています。自然言語処理の基本概念や技術、タスク(自動翻訳、質問応答など)を基礎から解説し、Pythonを用いて実装を学ぶことができます。また、機械学習や深層学習の基礎もカバーしており、日本語のデータセットを使用して実践的な学習が可能です。自然言語処理をしっかり学びたい方に最適な一冊です。
本書は、ビジネス書グランプリや大賞を受賞した著者による現代の変化を分析し、AIとデータの発展がもたらす影響について論じています。読者は、社会の変化、企業の戦略、教育のあり方など多岐にわたる問いに対する答えを見つけることができます。著者は、建設的な未来の創造を目指し、ファクトベースでの現状分析を行い、ビジネス、教育、政策などの領域における具体的なアプローチを提案しています。
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
日本のデータサイエンティスト第一人者である河本薫さんの書籍。現場にどうやってデータサイエンスを浸透していくか、組織としてどうやって価値ある分析アウトプットを出すことができるかが学べる。
この書籍は、人工知能(AI)と人間の共存について考察し、知性の認識や人間の生き方を探る内容です。三部構成で、第一部ではAIの歴史やディープラーニングの進展を解説。第二部ではAIが世界の見方に与える影響を論じ、第三部ではAIと人間社会の関係や自由主義の課題について考察します。著者はそれぞれ異なる専門分野から、AIの進展がもたらす新しい時代の教養について議論します。
この入門書は、ベイズ主義機械学習の基本原理を「モデルの構築→推論の導出」という手順で分かりやすく解説しています。内容は、機械学習とベイズ学習、基本的な確率分布、ベイズ推論による学習と予測、混合モデルと近似推論、応用モデルの構築と推論の5章から構成されています。著者は須山敦志と杉山将で、機械学習を身近に理解できるよう丁寧に記述されています。
本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーやグラフニューラルネットワーク、生成モデルなどの手法を詳しく解説しています。著者は、理論的な証明がなくても納得できる説明を重視し、実用性を考慮した内容を提供。全12章で、基本構造から各種学習方法、データが少ない場合の対策まで幅広く網羅しています。著者は東北大学の教授であり、実務家との共同研究の経験も反映されています。
本書は、ディープラーニングの理解に必要な数学を高校1年生レベルからやさしく解説し、最短コースで学べる内容です。微分、ベクトル、行列、確率などの必要最低限の数学を特製のマップで整理し、実際に動かせるコードをJupyter Notebook形式で提供します。内容は機械学習入門から始まり、理論編、実践編、発展編に分かれており、ディープラーニングの動作原理を深く理解できることを目指しています。
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。
本書は、ディープラーニングを支える数学に焦点を当て、その仕組みや機能を解説します。高校数学の知識を前提に、必要な数学を復習しつつ、偏微分などの基本も説明。ディープラーニングの理解を深めたい読者に向けて、数学がどのように役立つかを実感できる内容となっています。また、主要な概念や技術についても詳しく解説しています。
本書は、機械学習の基本から先進的な手法までを網羅したロングセラーのPyTorch版で、理論や数式も解説しています。前半ではscikit-learnを用いた基本的な手法やデータ前処理、後半ではPyTorchを使ったディープラーニング手法(CNN、RNN、Transformerなど)を詳述。新たにTransformerアーキテクチャやグラフニューラルネットワークに関する章も追加され、実践的な知見が得られる内容となっています。著者は機械学習の専門家で、実装を通じて理解を深めることを目的としています。
本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。