【2024年】「ai」のおすすめ 本 136選!人気ランキング
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- 仕事ではじめる機械学習
- ゼロから作るDeep Learning ❷ ―自然言語処理編
- 【Amazon.co.jp 限定】スラスラ読める Pythonふりがなプログラミング (ふりがなプログラミングシリーズ)
- 独学プログラマー Python言語の基本から仕事のやり方まで
- エンジニアなら知っておきたいAIのキホン 機械学習・統計学・アルゴリズムをやさしく解説
- 人工知能は人間を超えるか ディープラーニングの先にあるもの (角川EPUB選書)
- 世界一カンタンで実戦的な文系のための人工知能の教科書
- 教養としてのAI講義 ビジネスパーソンも知っておくべき「人工知能」の基礎知識
- Python 1年生 体験してわかる!会話でまなべる!プログラミングのしくみ
この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。
著者松尾豊は、日本の人工知能研究の第一人者として、最新技術「ディープラーニング」の進展とその影響を探求し、知能や人間の本質について問い直します。本書では、人工知能の歴史やブームを振り返りながら、技術の進化が人類にもたらす可能性と危機について論じています。
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
本書『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』は、機械学習の理論とPythonによる実践を解説するベストセラーの第3版です。分類、回帰、深層学習、強化学習など幅広いトピックをカバーし、最新のPythonライブラリに対応しています。特に、敵対的生成ネットワークと強化学習の新章を追加し、従来の内容を刷新しました。機械学習の理解を深めるための実用的な一冊です。
ディープラーニングの仕組み、言語や概念、映像を機械が理解する、ベイジアンネットと大脳皮質、なぜ人の常識は機械にとって難しい?汎用人工知能の実現への課題、どうすればうまく応用できるのか?応用が進む今の時代、改めて人工知能技術の全体像を見てみる。 第1章 人工知能はこうして生まれた 第2章 人工知能を体感してみよう 第3章 人工知能を支える基礎技術 第4章 人工知能はどう応用されているのか? 第5章 ディープラーニングは何がすごいのか? 第6章 人工知能の未解決問題と突破策 第7章 人工知能が溶け込んだ社会の将来像
本書は、AI社会における職業の不安を解消し、文系の人がAIを活用してキャリアアップするための実践トレーニング本です。専門用語を最小限に抑え、多様な業種別事例を通じてAIとの共働きスキルを身につける方法を紹介しています。内容は、AI社会での職の保持、文系向けのAIキャリア、AIの基本理解、企画力の向上、業種別事例の紹介などを含んでおり、特に文系のAI人材が社会に与える影響に焦点を当てています。著者はAIビジネスの推進に取り組む専門家です。
本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。
この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。
本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
本書『先読み!IT×ビジネス講座』第3弾では、対話型AI「ChatGPT」の実力や技術的背景、活用事例、可能性と課題について、第一人者へのインタビューを通じて深掘りします。自然言語処理やOpenAIなどのキーワードを交え、ビジネスや教育分野での活用方法やリテラシーの重要性も解説しています。内容はコンパクトで理解しやすく、幅広い分野に影響を与える生成系AIの理解を促進します。
この書籍は、AIが人類にもたらす影響について探求し、脅威と福音の両面を考察しています。著者は、AIの自律的な動きや自動化の進展を解説し、AI教育の重要性や未来の共存の可能性についても論じています。内容は、自律世界の到来やAIの役割、そして人間との関係性に焦点を当てています。著者は、技術とビジネスの専門家であり、AIの進化がもたらす社会の変革に関する洞察を提供しています。
これからの時代を生きるすべての人、必読! ■■同僚に、上司に、取引先に、面接官に、 子供に、親に、知人に、 【AI(人工知能)ってなんですか?】と 聞かれたら、あなたは答えられますか?■■ 今や新聞やテレビで「AI(エーアイ)」(人工知能)という言葉を 見聞きしない日はありません。 「AIに仕事を奪われる」というフレーズもよく聞きます。 ですが、いざAIって何?と聞かれても、 「人工の知能って…? 何でもできるロボットみたいなもの…?」と しどろもどろになってしまう人が多いでしょう。 本書は、やさしい文章とイラストで、AIってなあに?というところから AIの歴史、機械学習、ディープラーニングなど、AIのキホンを最初から解説します。 数式なし、専門用語なし! 【誰でも・ゼッタイ】わかります。 それでいて、「機械学習」や「ディープラーニング」といった一歩踏み込んだ部分も説明し、 さらに実際にAIを仕事で活かすヒントになるような具体的なことも紹介します。 また、PART2では「AIとシゴト」と題して、 AIでこれからの仕事はどう変わるかを説明します。 そして実際にAIの導入で変わった・変わっていく仕事の一部 (コールセンター、教師、医師、農家、秘書…等々)を、 実例を挙げて解説しています。 人工知能を知りたいけれど、IT系ではない人、普通の入門書でも挫折してしまった人、 かたい文章を読み慣れない人、就職活動中の学生さん、転職を考えている社会人の方、 子供の将来の職業を憂う親御さんなど、とにかく【普通の人向けのAI入門書】です。 これからの時代を生きるすべての人、必読です! ※本書はIT Search+で好評連載中の「教えてカナコさん! これならわかるAI入門」 をもとに大幅加筆し(PART2はすべて書きおろし)、書籍化したものです。 https://news.mynavi.jp/itsearch/series/solution/_ai.html PART1 AIのキホン CHAPTER 01 AIってなあに? CHAPTER 02 身近に存在するAI CHAPTER 03 AIが得意なこと・苦手なこと CHAPTER 04 AIの歴史 CHAPTER 05 AIはなにをやってるの? CHAPTER 06 機械学習ってなあに? CHAPTER 07 ディープラーニングってなあに? CHAPTER 08 AIが学習するってどういうこと? CHAPTER 09 AIを使ってみよう! PART2 AIとシゴト CHAPTER 01 AIで仕事はどう変わる? CHAPTER 02 問い合わせ窓口/コールセンター CHAPTER 03 料理研究家 CHAPTER 04 アナウンサー/声優 CHAPTER 05 保育士/教師/塾講師 CHAPTER 06 小説家 CHAPTER 07 アニメーター CHAPTER 08 医師 CHAPTER 09 農家 CHAPTER 10 秘書 CHAPTER 11 翻訳家 CHAPTER 12 これからのAIと仕事
本書は、AIの限界と人間の教育の問題を探る内容で、特に「東ロボくん」がMARCHクラスには合格したものの東大には入れなかった事例を通じて、AIが得意とすることと苦手とすることを考察しています。全国の読解力調査によると、多くの中高校生が教科書の文章を理解できておらず、将来的にAIに仕事を奪われる危険性が指摘されています。著者は、教育の改善が必要であるとし、最終章で専門家としての提言を行っています。
この書籍は、プログラミングの基本からゲーム開発までを紹介しています。第1部ではプログラムの作成方法やデータ構造について学び、第2部では「Bounce!」ゲームの制作を行い、第3部では「ミスター・スティックマン脱出ゲーム」の開発に取り組みます。著者はプログラマーやシステムアーキテクトとして活躍する専門家たちです。
急速に発展するAI技術の活用テクニックを学ぶ。ChatGPTや生成AIや画像生成AIなど。 急速に発展するAI技術の活用テクニックを学ぶ。ChatGPTや生成AIや画像生成AIなど。 Streamlitで手軽にAI技術を活用!あなたはAIを使えているのか?生成AI“ChatGPT”や画像生成AI“DALL・E”などの最近話題のAIを扱うスキルを体験学習!!データサイエンティスト・マーケッター 必須のスキル!!---本書は、急速に使えるようになってきたAI技術を使用するテクニックを学ぶ書籍です。ChatGPTや生成AIや画像生成AIなど。昨今は便利なオープンソースや機能が誰でも使えるように公開されています。それらを活用してAIプログラミングを学び、AIプログラミングのスキルを獲得しましょう。 ■ 0 序 章 0-1 AIを活用するとは何か 0-2 プログラミング環境を整えよう 0-3 ウォーミングアップ:streamlitを使って計算アプリをつくってみよう! streamlitを起動してみよう 簡単な掛け算アプリを作成してみよう 掛け算/足し算を選択できるようにアプリを拡張しよう コラム①:教育者という立場から見た本書の魅力 ■ 1 人やモノを検知するAIでアプリを作ってみよう 1-1 物体検知アプリを作成しよう カメラインプット機能を作成しよう 物体検知を実装しよう 人数を計測して出力しよう 動画から人数計測結果をグラフとして出力しよう 1-2 物体検知AIを紐解こう 画像データを扱ってみよう 動画データを扱ってみよう 画像の物体検知を行って物体検知AIの中身を知ろう 物体検知のパラメータを変えて出力させてみよう 写っている人の数を数えてみよう ■ 2 骨格や顔の部位を推定するAIでアプリを作ってみよう 2-1 骨格推定アプリを作成しよう カメラインプット機能を作成しよう 骨格推定機能を実装しよう 骨格推定を活用してどちらの手を挙げているか検知してみよう 顔の部位を推定するアプリを作ってみよう 顔の部位を推定して目線を判定するアプリを作ってみよう 2-2 骨格顔推定AIを紐解こう 骨格推定AIの中身を知ろう 複数のデータを骨格推定してAIの予測結果を理解しよう 顔の部位推定AIの中身を知ろう ■ 3 写真の画風を変えるAIでアプリを作ってみよう 3-1 写真の画風を変えるアプリを作成しよう 2つの画像読み込み機能を作成しよう 画風変換機能を実装しよう アニメ風画像に変換するアプリを作ってみよう アニメ風画像に変換するアプリを改良してみよう 3-2 画風変換AIを紐解こう 画風変換AIへの入力データを知ろう 画風変換AIを実行しよう アニメ風変換AIを見てみよう コラム②:対談「教育現場でどう役に立つのか?」 ■ 4 テキストを単語に分割するAIでアプリを作ってみよう 4-1 どんな単語が含まれているか可視化するアプリを作成しよう 文字を入力できるようにしよう 単語を分割してみよう 単語に関する情報を抽出してアプリを拡張しよう CSVに書かれている文章の中身を可視化するアプリに拡張しよう 4-2 形態素解析を紐解こう 形態素解析をやってみよう 係り受け/固有表現抽出をやってみよう 形態素解析をつかいこなそう ■ 5 類似文章を検索するAIでアプリを作ってみよう 5-1 類似文章を検索するアプリを作成しよう 2つの文章の類似度を測定するアプリを作成しよう 類似文章を検索するアプリに拡張しよう 5-2 言語系AIによる文章の特徴量化と類似度計算を紐解こう 単語集計で文章を特徴量化してみよう 単語分散表現による特徴量化を体験しよう コラム③:対談「子どもたちに向けて」 ■ 6 OpenAIのGPTを活用したアプリを作ってみよう 6-1 GPTを活用したアプリを作成してみよう GPTの基本知識を押さえよう OpenAIのAPIを使用する準備を整えよう プログラムを生成してくれるアプリを作成しよう 6-2 GPTの利用方法について深堀りしてみよう GPT3.5モデルの特徴を確認しよう パラメータによる違いを確認しよう 様々な利用用途を試してみる API単体で利用する場合の留意点を押さえよう ■ 7 OpenAIの画像生成AIを活用したアプリを作ってみよう 7-1 画像を生成するアプリを作成しよう OpenAIの画像生成に関する基本知識を押さえよう 画像を生成してくれるアプリを作成しよう GPTと組み合わせたアプリに拡張しよう 7-2 画像生成(DALL・E)の利用方法について深堀りしてみよう 画像生成の基本的な使い方を押さえよう 画像生成のやり方を変えてみよう 言語の入れ方や種類を工夫してみよう コラム④:対談「プログラミングを他業種の人が習得する」
AIのプロ×外資コンサルタント直伝!生成AI時代の「仕事術」「身につけるべきスキル」「世界がどう変わるか」がいっきにわかる 外資系コンサルが仕事で使うプロンプトを公開!これから絶対身につけるべき8つスキルとは?業界&業種別にこれからどうなるかもわかる!生成AIやChatGPTの原理&使い方からリスク対策方法、身につけるべきスキルまで、外資系コンサル(ビジネスのプロ)かつAIのプロだから書ける超実践的仕事術!インターネット登場以来の衝撃と言われる「生成AI時代」をサバイバルするスキルと知識がこれ一冊ですべてわかる!! PART1 仕事術編 CHAPTER 1 ツールとしての生成AIの活用 CHAPTER 2 生成AI時代に求められるスキル CHAPTER 3 生成AIにおけるリスクと対策 PART2 仕事の未来編 CHAPTER 4 生成AIがもたらす4つの革命 CHAPTER 5 生成AIの社会へのインパクト【業界編】 CHAPTER 6 生成AIの社会へのインパクト【職業・生活編】 CHAPTER 7 生成AIのもたらす未来
初心者がプログラミングを学びやすい構成が魅力。Pythonの基本的な文法から実際にコードを書く過程まで、わかりやすい解説でスムーズに学べます。豊富な例題や演習が用意されているため、しっかりと理解を深めながら進めることができ、実践的なスキルが身につく点がポイントです。初めてPythonに触れる人でも安心して学べます。
産業構造や企業戦略にインパクトを与える人工知能(AI)。米国における先端企業の実例や日本企業の取り組みを中心取材・紹介する。 ビジネスパーソンに役立つAI解説書の決定版! なぜ、これからの企業経営にAI戦略が必要なのか? AIを導入しないままだと、どうなってしまうのか? 実際にAIをビジネスへ生かすために必要なこととは何か? 海外、国内企業の先進事例をケーススタディで解説しつつ、 AIの可能性を探る、知的興奮に満ちた一冊。 ■天才棋士・羽生善治氏vs.AI研究の第一人者・松尾豊氏がスペシャル対談 「ディープラーニングの先の未来で起きること」 まさに“最高頭脳”同士の対談!松尾氏には、最新のAIで何ができるか、そしてこれから何が起こるかなどの疑問を直撃。羽生氏にはコンピュータ将棋と戦う、トーナメント戦への参戦を決めた決意などを訊きながら、わかりやすく“AI革命”を解きほぐしてもらいます。 ■海外企業の戦略はこれだ ・グーグルの現地取材、GE、マイクロソフト、シーメンス、ボッシュの戦略検証によって、世界先進企業が経営戦略へ、AIをどう取り入れようとしているのかを浮き彫りにします。 ・オープン戦略、IoT、インダストリー4.0など、“今”を理解するために必要なキーワードを完全網羅。 ・フィンテック革命とは何か?-欧米ではベンチャー企業がAIを使うことで、新たな金融サービスを生み出しています。日本にも影響を広げつつある、その変化について解説します。 ■日本企業最前線 ・トヨタ自動車、NEC、富士通、日立製作所、NTTグループ、ソフトバンクグループ、コマツ、ヤフーなど、AIを経営戦略に活用する企業を、東洋経済記者が徹底取材します。あなたの会社の参考になるケーススタディがあるかもしれません。 ・プリファードネットワークスなど、世界が注目する日本発ベンチャーが登場。 ・アルファ碁“圧勝”の理由とは? AIは作家になれるか? などコラムも充実。 ・山田誠二・人工知能学会会長 などインタビューも読み応えがあります。 ■機械と共存するために ・AIによる金融支配、人間の雇用代替の脅威が指摘される中、人間がAIと共存するためには何が必要か、分析します。 ■これで完璧!AIブックガイド ・本書執筆陣の推薦などをもとに編集部が選んだ必読の14冊を紹介します。
この書籍は、人工知能(AI)と人間の共存について考察し、知性の認識や人間の生き方を探る内容です。三部構成で、第一部ではAIの歴史やディープラーニングの進展を解説。第二部ではAIが世界の見方に与える影響を論じ、第三部ではAIと人間社会の関係や自由主義の課題について考察します。著者はそれぞれ異なる専門分野から、AIの進展がもたらす新しい時代の教養について議論します。
このビジネス書は、機械学習やディープラーニングの基本概念からビジネスチャンスまでを図解でわかりやすく解説し、法律的なリスクについても弁護士が詳しく説明しています。内容は、人工知能と共創するビジネスの未来、自動運転技術、ドローンビジネス、画像認識、マッチングビジネス、フィンテックなど幅広いテーマをカバーしています。著者は法律とビジネスの専門家で、企業の戦略立案やM&Aに関する豊富な経験を持っています。
この書籍は、人工知能プログラミングに必要な数学を基礎から優しく学べる参考書です。著者は「10秒で始める人工知能プログラミング学習サービス」の代表者で、数学に苦手意識がある人でも理解できる内容になっています。基本的な数学から微分、線形代数、確率・統計を学び、実践編では住宅価格の推定や自然言語処理、手書き数字認識などの具体的な例を通じて理解を深めます。対象読者は、AIアルゴリズムを学びたいが数学に不安がある人々です。
本書は人気シリーズの第3弾で、オリジナルのディープラーニングフレームワーク「DeZero」をゼロから作成する内容です。最小限のコードでモダンな機能を実現し、全60ステップでフレームワークを完成させます。これにより、PyTorchやTensorFlowなどの知識を深めることができます。著者は人工知能の研究開発に従事する斎藤康毅氏です。
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
この書籍は、AIを活用した様々な応用例を紹介しており、機械学習やディープラーニングの基礎、画像・動画処理、自然言語処理、業務効率化の方法などを学ぶことができます。また、マスク着用の判定など新しい生活様式に対応したサンプルも収録されています。著者はプログラミングや機械学習に関する多くの書籍を執筆しているクジラ飛行机氏をはじめ、専門家たちです。
この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。
線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。
この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
本書は、ディープラーニングを一から学びたい人向けに、数学的表現を避けて実践的なコードを用いて基本概念を解説します。著者はKerasの開発者で、TensorFlowをバックエンドに使用。内容は、ディープラーニングの基礎から始まり、コンピュータビジョンや自然言語処理の応用例まで幅広くカバー。最終的には、ディープラーニングの適用可能性や限界を理解できるようになります。
本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。
話題の画像生成AI「Stable Diffusion(ステイブル ディフュージョン)」はじめての入門書! 図解入り解説! 話題の画像生成AI「Stable Diffusion(ステイブル ディフュージョン)」 はじめての入門書! わかりやすい図解入り解説! 話題の画像生成AI「Stable Diffusion(ステイブル ディフュージョン)」 はじめての入門書! わかりやすい図解入り解説!
本書は人気シリーズの第4弾で、強化学習をテーマにしています。外部ライブラリに頼らず、基本的な技術やアイデアをゼロから実装しながら学ぶスタイルを採用しています。理論と実践の両面から、強化学習の構成要素を丁寧に解説し、数式だけでなくコードを通じて理解を深めることができます。目次にはバンディット問題やマルコフ決定過程、ベルマン方程式などが含まれています。著者は人工知能の研究開発に従事する斎藤康毅氏です。
強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。
本書は、日本ディープラーニング協会の「ディープラーニングG検定ジェネラリスト」試験に向けたテキストと問題集で、合格に必要な知識と対策を提供します。数式を控え、わかりやすい説明で構成されており、ビジネスでのディープラーニング活用を目指す人を対象としています。内容は、AIの歴史、数学的基礎、機械学習の基礎と実装、ディープラーニングの基本と研究分野、産業展開、制度政策など多岐にわたります。著者はAIの専門家であり、実践的な学習が可能です。