についてお探し中...

【2024年】「kaggle」のおすすめ 本 92選!人気ランキング

この記事では、「kaggle」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. Kaggleで勝つデータ分析の技術
  2. Kaggleに挑む深層学習プログラミングの極意 (KS情報科学専門書)
  3. Pythonで動かして学ぶ! Kaggleデータ分析入門
  4. 図解ポケット 今日から使える! データサイエンスがよくわかる本
  5. AI・データ分析プロジェクトのすべて[ビジネス力×技術力=価値創出]
  6. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  7. データ分析のための数理モデル入門 本質をとらえた分析のために
  8. はじめてのパターン認識
  9. The Kaggle Book:データ分析競技 実践ガイド&精鋭31人インタビュー (impress top gear)
  10. 漫画でわかる デジタルマーケティング×データ分析
他82件
No.1
100
みんなのレビュー
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
No.3
84
みんなのレビュー
まだレビューはありません
No.4
80
みんなのレビュー
まだレビューはありません
No.6
75
みんなのレビュー
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
@@SHEQu
No.7
73
みんなのレビュー
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
No.8
73
みんなのレビュー
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
No.10
72

個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ

みんなのレビュー
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
No.11
71
みんなのレビュー
まだレビューはありません
No.12
71
みんなのレビュー
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
No.14
66
みんなのレビュー
ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!
No.17
65
みんなのレビュー
Rを使って統計学の基本を分かりやすく手を動かしながら学べる書籍。Rを学ぶならまずこの本からはじめるのがオススメ!
No.18
65
みんなのレビュー
内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊
No.19
65
みんなのレビュー
まだレビューはありません
No.20
65
みんなのレビュー
ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。
No.24
64
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.30
63

ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン

みんなのレビュー
まだレビューはありません
No.31
63

未来IT図解 これからのデータサイエンスビジネス

松本 健太郎
エムディエヌコーポレーション
みんなのレビュー
まだレビューはありません
No.33
60
みんなのレビュー
まだレビューはありません
No.34
60

ビジネスや意思決定の場面で,データを活用したい方に手にとっていただきたいデータサイエンスの入門書。目的別の分析手法を幅広く… ビジネスや意思決定の場面で,データを活用したい方に向けたデータサイエンスの入門書。データの種類ごとの性質や収集時の注意点,目的別の分析手法からデータ可視化まで幅広く扱う。各章末には課題を設置し,最終章ではデータサイエンスの展望や限界についても言及。 第1章 データサイエンスとは 第2章 データ収集のための基礎知識 第3章 データ空間の構成法 第4章 データ生成のメカニズム 第5章 データの可視化手法 第6章 データ分析の手法 第7章 データ活用のフレームワーク 第8章 データの分析事例 第9章 データ分析上の注意点と応用知識

みんなのレビュー
まだレビューはありません
No.35
59
みんなのレビュー
まだレビューはありません
No.37
59
みんなのレビュー
まだレビューはありません
No.40
58

統計に関する知識や活用力を問う全国統一試験「統計検定」。学生・社会人問わず注目の資格で、統計学会認定、唯一の公式問題集です! 統計に関する知識や活用力を問う全国統一試験「統計検定」。学生・社会人問わず注目の資格で、統計学会認定、唯一の公式問題集です!

みんなのレビュー
まだレビューはありません
No.41
58

ビジュアル データサイエンティスト 基本スキル84 (日経文庫)

野村総合研究所 データサイエンスラボ
日経BP 日本経済新聞出版
みんなのレビュー
まだレビューはありません
No.43
58

データサイエンスの森 Kaggleの歩き方

坂本 俊之
シーアンドアール研究所
みんなのレビュー
まだレビューはありません
No.44
58
みんなのレビュー
まだレビューはありません
No.54
58
みんなのレビュー
線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。
No.55
58
みんなのレビュー
まだレビューはありません
No.60
57

自然言語処理編

みんなのレビュー
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
No.64
57
みんなのレビュー
超人気のUdemy講師酒井さんの書籍。この書籍さえ一通り読んでおけばPythonは問題ないといっても過言ではないくらい網羅性があって分かりやすい。
No.66
57
みんなのレビュー
まだレビューはありません
No.68
57
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.69
57
みんなのレビュー
まだレビューはありません
No.70
57
みんなのレビュー
数学的にマーケティングを学ぶのであれば絶対にこれ。というかこれくらいしか数学的観点でここまで詳しくマーケティングについて学べる書籍はない。森岡さんがどうやってUSJを立て直したのかが数学的な観点から学べる。「USJを変えたたった1つのこと」と合わせて読むことでマーケティングのいろはが身につくはず。
No.71
57
みんなのレビュー
まだレビューはありません
No.73
57
みんなのレビュー
まだレビューはありません
No.77
57
みんなのレビュー
まだレビューはありません
No.78
57
みんなのレビュー
まだレビューはありません
No.80
57
みんなのレビュー
まだレビューはありません
No.84
57
みんなのレビュー
まだレビューはありません
No.85
57
みんなのレビュー
まだレビューはありません
No.87
57
みんなのレビュー
まだレビューはありません
No.88
57

ネットワーク分析

みんなのレビュー
まだレビューはありません
search