【2023最新】「音声認識」のおすすめ本80選!人気ランキング
- パターン認識と機械学習 上
- おしゃべりなコンピュータ 音声合成技術の現在と未来 (丸善ライブラリー)
- 深層学習教科書 ディープラーニング G検定(ジェネラリスト)公式テキスト 第2版
- 音声認識 (機械学習プロフェッショナルシリーズ)
- 音声言語の自動翻訳- コンピュータによる自動翻訳を目指して - (音響サイエンスシリーズ 18)
- 自然言語処理の基礎
- Pythonで学ぶ音声合成 機械学習実践シリーズ
- イラストで学ぶ 音声認識 (KS情報科学専門書)
- ディープラーニング活用の教科書
- ディープラーニング活用の教科書 実践編
『ドラえもん』の「声のキャンデー」や『ミッション・インポッシブル3』など多くのフィクション作品にみられる音声合成シーン。現実は、フィクション作品に発揮された作者たちの想像力を、はるかに超えたところにあります。現在の音声合成は、いったい、どこまで進んでいるのでしょうか?どんなふうに利用されているのでしょうか?どのような人の、どのような夢を現実にしてきたのでしょうか?これから、どのような応用がなされていく可能性があるのでしょうか?その応用は、人類の未だ見ない将来をどのように変えていくのでしょうか?「音声合成」という世界への旅に出発しましょう。 第1章 「コンピュータの声」に囲まれた私たちの日常 第2章 歌うコンピュータ 第3章 「化ける」コンピュータ-片思いの相手に話しかけてもらうには? 第4章 踏み越えるコンピュータ-「声」の障碍と音声合成 第5章 話すコンピュータ-言葉の壁を越える 第6章 おしゃべりなコンピュータの未来
基礎理論はコンパクトにまとめ、「耐雑音」「話者認識」「深層学習」についてたっぷり解説。音声認識分野がこれ一冊で学べる! 音声の信号処理についての知識ゼロでも読めるように、懇切丁寧に解説した。基礎理論はコンパクトにまとめ、「耐雑音」「話者認識」「深層学習」についてたっぷり解説。一気に実用が進んだ音声認識分野がこれ一冊で学べる! ■おもな内容 第1章 音声とは 第2章 音声分析 第3章 音声認識とは 第4章 隠れマルコフモデル 第5章 言語モデル 第6章 大語彙連続音声認識 第7章 耐雑音音声認識 第8章 話者適応と話者認識 第9章 深層学習 ■機械学習プロフェッショナルシリーズ 本シリーズでは、発展著しい機械学習技術の数学的な基礎理論、実用的なアルゴリズム、それらの活用法を、全29巻にわたって刊行する。 ビッグデータ時代を牽引している若手・中堅の現役研究者が、入門的な内容から最先端の研究成果までをわかりやすく解説。 これからデータサイエンス分野で研究を始めようとしている大学生・大学院生、および、機械学習技術を基礎科学や産業に応用しようとしている研究者・技術者に向けた注目のシリーズである。 ■シリーズ編者 杉山 将 理化学研究所 革新知能統合研究センター センター長/東京大学大学院新領域創成科学研究科 教授 第1章 音声とは 1.1 音の知覚 1.2 音声の生成 1.3 音韻と音素 第2章 音声分析 2.1 前処理 2.2 音声特徴量 2.3 音声特徴量の量子化 第3章 音声認識とは 3.1 音声認識の分類 3.2 DPマッチング 第4章 隠れマルコフモデル 4.1 確率モデルを用いたパターン認識 4.2 マルコフ過程 4.3 隠れマルコフモデルとは 4.4 音声認識のための隠れマルコフモデル 4.5 HMMを用いたパターン認識 第5章 言語モデル 5.1 言語の複雑さの尺度 5.2 確率的言語モデル 5.3 形態素解析 第6章 大語彙連続音声認識 6.1 サブワード認識単位を用いた学習・認識 6.2 音素文脈決定木を用いたクラスタリング 6.3 発音辞書 6.4 探索技術 6.5 識別学習 第7章 耐雑音音声認識 7.1 雑音とは 7.2 加算性雑音 7.3 乗算性雑音 7.4 非定常雑音への対応 第8章 話者適応と話者認識 8.1 話者適応とは 8.2 事後確率最大化法 8.3 最尤線形回帰法 8.4 話者正規化 8.5 話者認識とは 8.6 i-vectorを用いた話者照合 第9章 深層学習 9.1 ニューラルネットワーク 9.2 誤差逆伝播法 9.3 ニューラルネットワークによる音声認識 9.4 音声認識のための深層学習 9.5 音声認識の要素技術における深層学習 9.6 End-to-End学習 9.7 今後の展望
「音声合成」とは、人間の音声を人工的に作り出す音声情報処理の一分野です。深層学習の発展に従い、画像認識・音声認識などの分野と同様に、音声合成においてもパラダイムシフトが起きています。本書では従来の統計的音声合成システムの基礎を解説した上で、深層学習技術による近年の音声合成の発展について詳説しています。また実際に公開されているデータセットを用いて、深層学習を用いた音声合成システムの実装も行っています。本書は『Pythonで学ぶ音源分離』『同音声認識』に続く、中級者以上向けの「機械学習実践シリーズ」です。
買わずにはいられない!!一目でわかる的確なイラストで、初学者が知っておくべきことを平易に解説し、WFSTについても詳述した。 ・読者の信頼が厚い荒木雅弘先生の渾身の労作! ・『イラストで学ぶ機械学習』『イラストで学ぶ人工知能概論』に続くシリーズ第5弾! スマートフォンで爆発的に普及した音声認識技術は、実現困難といわれていた…。 では、なぜ、ここまで普及したのか。 音声認識技術の歴史から最先端キーテクノロジーまでを、イラストで明快に解説。 WFSTによる音声認識を詳しく解説した和書は本邦初! もう、買わずにはいられない! 第1章 はじめに 第2章 音声とは 第3章 統計的パターン認識 第4章 有限状態オートマトン 第5章 音声からの特徴抽出 第6章 音声の認識:基本的な音響モデル 第7章 音声の認識:高度な音響モデル 第8章 音声の認識:言語モデル 第9章 音声の認識:探索アルゴリズム 第10章 音声の認識:WFSTの演算 第11章 音声の認識:WFSTによる音声認識 第12章 意味・意図の解析 第13章 音声対話システムの実現に向けて 第14章 おわりに
「学びはじめの1冊に最適」と評判の機械学習の定番入門書.近年の技術動向を反映した第2版. ・機械学習のしくみを知りたいけど、数学は苦手… ・専門書を読みたいけど、数式ばかりで挫折した… という人を「機械学習の世界」に導く,おすすめの1冊! 前半部では、機械学習・パターン認識の基礎を学びます。機械学習の理論を学習しようとすると、高度な数学の知識が必要と思われがちですが、本書は「パターン認識ってなに?」といった初歩の初歩からかみくだいて解説しています。もちろん初歩だけでなく、ニューラルネットワーク・サポートベクトルマシンなどの重要トピックの理論的な側面まで、Scilab、Wekaを使ったパターン認識の演習を行いながら学ぶことができます。 後半部では、HTK、Julius、MMDなどのフリーソフトを使いながら音声認識システムをつくっていきます。音声やテキストに対してパターン認識を適用する際は、隠れマルコフモデル・N-gramなどの言語モデルに関する難解な知識が必要になりますが、手を動かすと同時に理論面も学習することによって、音声認識にとどまらない「実際の認識に使える」知識が身につきます。 「学びはじめの1冊に最適」と評判の機械学習の定番入門書が、リカレントニューラルネットワーク・畳込みニューラルネットワークなど近年の技術動向を反映した解説を加えて第2版となりました。 第1部 パターン認識の基礎 第1章 パターン認識って何? 第2章 データをきちんと取り込もう 第3章 パターンの特徴を調べよう 第4章 パターンを識別しよう 第5章 誤差をできるだけ小さくしよう 第6章 限界は破れるか(1) ―サポートベクトルマシン 第7章 限界は破れるか(2) ―ニューラルネットワーク 第8章 未知データを推定しよう ―統計的方法 第9章 本当にすごいシステムができたの? 第2部 実践編 第10章 声をモデル化してみよう ―音響モデルの作り方・使い方・鍛え方 第11章 HTKを使って単語を認識してみよう 第12章 文法規則を書いてみよう 第13章 統計的言語モデルを作ろう 第14章 連続音声認識に挑戦しよう 第15章 会話のできるコンピュータを目指して 付録A 数学的な補足 付録B Scilab演習 付録C Wekaにおけるディープニューラルネットワークによる識別 付録D 読書ガイド
本書は日本ディープラーニング協会が実施する「ディープラーニングG検定」の法律・倫理分野に対象を絞ったテキストです。演習問題にはディープラーニングG検定の過去問題を収録しています。 AI関連の開発をする際に、そしてビジネスでAI活用する上で、どうしても最低限知っておかねばならない法律や倫理項目があります。しかし、AIに関する法律や倫理を学べる書籍は難解な法律家向けの書籍以外はほぼありません。 本書は、AIに関する法律・倫理の重要事項を、基礎から平易に解説しています。 ディープラーニングG検定の試験対策だけではなく、AI開発者やAIを活用してビジネスを行っている方、DX推進をされている方などにも幅広く活用していただけます。 第1章 導入 1-1 全体像と導入 第2章 AIに関する法律と契約 2-1 AIと法律の全体像-1 総論 2-2 AIと法律の全体像-2 知的財産権 2-3 著作権法-1 AIと著作権法の全体像 2-4 著作権法-2 著作権の基本 2-5 著作権法-3 AIのモデルと著作権 2-6 著作権法-4 著作物とAIの学習 2-7 著作権法-5 AI生成物と著作権 2-8 特許法-1 特許法 2-9 特許法-2 特許要件 2-10 特許法-3 発明者・職務発明 2-11 データ利活用 2-12 不正競争防止法-1 営業秘密 2-13 不正競争防止法-2 限定提供データ 2-14 不正競争防止法-3 不正競争行為 2-15 個人情報保護法-1 個人情報保護法の全体像 2-16 個人情報保護法-2 個人情報、個人データ、保有個人データとは何か 2-17 個人情報保護法-3 個人情報、個人データ、保有個人データの規制 2-18 個人情報保護法-4 その他の情報カテゴリ (要配慮個人情報、仮名加工情報、匿名加工情報、個人関連情報) 2-19 個人情報保護法-5 医療情報・カメラ画像 2-20 個人情報保護法-6 海外の個人情報保護制度 2-21 独占禁止法 2-22 契約-1 開発契約① 2-23 契約-2 開発契約② 2-24 契約-3 秘密保持契約 2-25 契約-4 AIサービス提供契約 第3章 AI倫理とAIガバナンス 3-1 AI倫理とAIガバナンスの概要 3-2 国内外の諸ルール 3-3 プライバシー 3-4 公平性 3-5 安全性とセキュリティ 3-6 悪用 3-7 透明性 3-8 民主主義 3-9 環境保護 3-10 仕事 3-11 その他の価値 3-12 AIガバナンス
さまざまな業界で導入が進められているAIについて、どのような分野で活用されているのかが鳥瞰図で一目でわかる AIの導入事例が一目でわかる! 金融、流通、製造、インフラなど全8業界36業種のAIの導入について、どのような分野で活用されているのか、 どのような事項との親和性が高いかといったことについて鳥瞰図で解説。豊富な実例も掲載しており、ビジネスのアイデア創出にも応用できます。 また、「こんな応用可能性があります」にとどめず、実際に実装したりトライアルをするときのノウハウも掲載しています。 本書掲載の鳥瞰図はご購入者特典としてDLして活用できます。 【本書に掲載されている業種】 〈流通〉 コンビニ・スーパーマーケット 百貨店業 郵便・運送業 〈製造〉 自動車製造業 食品・飲料製造業 化粧品・日用品製造業 金属製造業・化学工業 重工業 建設業 繊維工業(アパレル) 電機製造業 〈金融〉 銀行業 保険業 証券業 〈サービス〉 ホテル業 旅行代理業 外食業 テーマパーク 放送局 〈インフラ〉 通信業 鉄道業 航空業 空港 道路・交通インフラ管理業 エネルギー業(ガス・電気) 石油および天然ガス生産・販売業 〈公共〉 学校・学習塾 警察・警備 消防・防災 〈ヘルスケア〉 病院 介護サービス業 製薬業 〈その他〉 農業 水産業 スタジアム・(プロ/アマ)スポーツ ゲーム業 Chapter 1 流通 コンビニ・スーパーマーケット 百貨店業 郵便・運送業 詳細解説:商品需要予測に基づく在庫管理 Chapter 2 製造 自動車製造業 食品・飲料製造業 化粧品・日用品製造業 金属製造業・化学工業 重工業 建設業 繊維工業(アパレル) 電機製造業 詳細解説:査定自動化・見積り自動化 Chapter 3 金融 銀行業 保険業 証券業 詳細解説:不正検知 Chapter 4 サービス ホテル業 旅行代理業 外食業 テーマパーク 放送局 詳細解説:キャンペーン企画・価格設定 Chapter 5 インフラ 通信業 鉄道業 航空業 空港 道路・交通インフラ管理業 エネルギー業(ガス・電気) 石油および天然ガス生産・販売業 詳細解説:劣化予測・メンテナンス計画作成 Chapter 6 公共 学校・学習塾 警察・警備 消防・防災 詳細解説:画像データによる異常検知・品質評価 Chapter 7 ヘルスケア 病院 介護サービス業 製薬業 詳細解説:センサーデータによる異常検知 Chapter 8 その他 農業 水産業 スタジアム・(プロ/アマ)スポーツ ゲーム業 詳細解説:見込み顧客分析・離反分析
人間を超える精度での音声認識の期待に応えるために,最新の機械学習技術を学ぶテキストである。 音声認識は夢のテクノロジーである。人の言葉を聞き取り理解する技術は, 人間の真のパートナーとなるべき機械もしくはロボットを実現する鍵となる技術である。スマートスピーカーやスマートフォンのような製品とともに,急速に一般化しつつある音声認識であるが,人々の要求はいまも高度化し続けている。音声認識が身近になることで,「どのような状況で」「だれが」「どのようなことを」話しても認識できるようになることの重要性が,これまでより高まってきている。また,ほぼ人間と同精度での認識が可能になっ た現在,人間を超える認識精度への期待も高まりつつある。本書は,そのような期待に応えうる未来の技術を切り拓くために,必要な基礎知識を学ぶためのテキストである。 本書の特色として,有限状態トランスデューサと機械学習の関わりについて,広く解説している点がある。音声認識は機械学習の典型的な応用例の一つであるが,そのシステムの複雑性は他の機械学習技術と一線を画する。本書では,複雑なシステムを有限状態トランスデューサを用いて解説する。有限状態トランスデューサは複雑なシステムを簡潔に記述するための便利な概念であるのみではなく,今日の多くの音声認識ソフトウェアの実装において,基本構成要素として利用されており,今後ともに重要な基礎技術である。 本書の主たる想定読者は,音声認識の分野に携わる技術者,研究者,およびこの分野の研究を始めようとする学生である。近年のこの分野の急速な発展を鑑みるに,書籍という媒体で日々更新され続ける最先端をなぞるのは得策ではない。本書は,本書を手に取った読者が,論文やウェブなどによって最新の情報に触れる際,それらの理解をより深めることができるようにと執筆されたものである。近い将来,本書の読者と,より新しい技術について議論するのが楽しみである。 スマートスピーカなど音声認識を利用した情報家電が身近になってきている。ほぼ人間と同精度での認識が可能になった今,人間を超える精度での音声認識の期待にこたえるために,最新の機械学習技術を学ぶテキストである。 1.本書の目的と事前知識 1.1 本書の目的 1.2 本書の構成 1.3 本書で用いる数式の表記 1.4 確率論の基礎 1.4.1 周辺化 1.4.2 条件付き確率 1.4.3 独立性 1.4.4 連続分布と確率密度関数 2.機械学習による予測 2.1 モデルによる予測 2.2 識別関数の構成 2.3 確率モデルの学習 2.4 最適化のアルゴリズム 2.4.1 凸関数の最適化 2.4.2 指数型分布族の最尤推定 2.4.3 潜在変数モデルとEMアルゴリズム 2.4.4 勾配に基づく局所最適化 2.5 例:身長と体重から学年を推定する 2.5.1 生成モデルによるアプローチ 2.5.2 識別モデルによるアプローチ 2.5.3 識別関数法によるアプローチ 2.6 深層学習 2.6.1 識別モデルの構成とソフトマックス層 2.6.2 確率的勾配降下法 2.7 モデル選択と過学習 2.7.1 過学習 2.7.2 交差検証 2.7.3 正則化 2.7.4 アーリーストッピング 引用・参考文献 3.有限状態トランスデューサ 3.1 有限状態オートマトン 3.2 文法と辞書の表現 3.2.1 重みの導入 3.2.2 トランスデューサの導入 3.3 有限状態トランスデューサの数学的定義 3.3.1 半環 3.3.2 状態集合Qと状態遷移集合E 3.3.3 初期状態Iと終了状態F 3.3.4 遷移パスと重み 3.3.5 FSTの等価性 3.3.6 対数確率半環とFSTの確率的解釈 3.3.7 FSTの連結,クリーネ閉包,和 3.4 合成 3.4.1 合成演算のアルゴリズム 3.4.2 合成演算の確率的解釈 3.4.3 アルファベット列のFSTによる表現と合成演算 3.5 最短経路問題 3.6 FSTの最適化 3.6.1 トリミング 3.6.2 ε除去 3.6.3 重みとラベルのプッシング 3.6.4 決定化 3.6.5 最小化 3.7 対数確率半環の重みを持つ非巡回FST上の期待値計算 3.7.1 非巡回FSAのトポロジカルソート 3.7.2 期待値計算 引用・参考文献 4.音声認識システム 4.1 音声認識システムの構成 4.2 音声の単位 4.2.1 音素を介した音声認識の生成モデル 4.2.2 発音辞書モデル 4.3 音声の分析 4.3.1 音声信号のモデル 4.3.2 離散フーリエ変換と周波数解析 4.3.3 フィルタバンク処理 4.3.4 ケプストラム抽出と無相関化 4.3.5 対数エネルギー 4.3.6 セグメント分析 4.4 音声認識システムの評価法 4.4.1 認識精度の評価 4.4.2 計算効率の評価 引用・参考文献 5.音響モデル 5.1 隠れマルコフモデル 5.1.1 雨と水音のモデル 5.1.2 複数のHMM状態を持つモデル 5.1.3 雨の推定から音声認識へ 5.2 混合正規分布と連続分布型HMM 5.3 音素文脈依存モデル 5.3.1 決定木による音素文脈クラスタリング 5.3.2 決定木を用いた音響モデルのFSTによる表現 5.3.3 凝集型クラスタリングによる質問の自動生成 5.4 ニューラルネットによる音響モデル 5.4.1 再帰結合ニューラルネット 5.4.2 ゲートユニットと長短期記憶 5.5 系列識別学習 5.5.1 系列識別学習規準 5.5.2 認識仮説を用いた最適化アルゴリズム 5.6 音響モデル適応の技術 5.6.1 声道長正規化による適応 5.6.2 話者コードの入力による適応 5.6.3 再学習による適応 引用・参考文献 6.言語モデル 6.1 言語モデルとは 6.2 ユニグラム言語モデルとBag-of-words 6.3 Nグラム言語モデル 6.4 Nグラム言語モデルの学習と平滑化 6.4.1 Nグラム言語モデルの最尤推定 6.4.2 加算平滑化 6.4.3 線形補間平滑化 6.4.4 ウィトン・ベル平滑化 6.4.5 グッド・チューリング推定法 6.4.6 カッツ平滑化 6.4.7 絶対割引法 6.4.8 クニーザー・ナイ平滑化 6.5 Nグラム言語モデルのFSTによる表現 6.6 最大エントロピーモデルと識別的言語モデル 6.6.1 最大エントロピー原理に基づく言語モデル 6.6.2 文レベルの最大エントロピーモデル 6.6.3 音声認識のための識別的言語モデル 6.7 ニューラルネット言語モデル 6.7.1 ニューラルネットによる後続単語の予測 6.7.2 単語の分散表現 6.7.3 ニューラルネット言語モデルによるリスコアリング 引用・参考文献 7.大語彙連続音声認識 7.1 FSTの合成と確率モデル 7.1.1 デコーディングネットワークの構成と探索誤り 7.1.2 非曖昧化シンボル 7.2 大語彙連続音声認識の探索問題 7.3 大規模FST合成の技術 7.3.1 オンザフライ合成 7.3.2 ディスクベース認識システム 7.4 Nベストリストおよびラティスの生成 7.4.1 ラティスの生成 7.4.2 ラティスからのNベストリストの生成 引用・参考文献 8.深層学習の発展 8.1 さまざまなニューラルネット要素 8.1.1 飽和しない活性化関数 8.1.2 ドロップアウト 8.1.3 バッチ正規化 8.1.4 畳み込み層/プーリング層 8.2 ニューラルネットの高速化 8.2.1 重みの量子化 8.2.2 特異値分解による重み行列の圧縮 8.2.3 蒸留によるモデル変換 8.3 End-to-end音声認識 8.3.1 CTC 8.3.2 エンコーダ-デコーダ型End-to-end音声認識 引用・参考文献 索引
これからAIを学ぶ人に向けた入門書。ビジネスへの活用法から最新技術までをカバーした、「最初に手にすべきAI本」 本書は、これから人工知能(AI)を学びたいと考える人に向けたAIの入門書です。エンジニアではない人、すなわち中高生や文系学部の大学生、文系出身のビジネスパーソンや経営者などでも理解できるように、分かりやすくAIの本質や基礎知識を解説しました。AIのビジネスへの活用法からAIの最新技術までをカバーした、「最初に手にすべきAI本」です。 著者は、日本経済新聞社や日経BPのセミナーでAIやIoTの講座を教える人気講師。フジテレビの「ホンマでっか!?TV」に評論家として出演もしています。語り口が初心者にも分かりやすいと定評のある著者が、必要最低限のポイントに絞り、できる限り専門用語を使わないように配慮しながら書き上げました。 初心者でも人工知能の本質を短時間で理解できるようにするために、それぞれの状況や理解度に応じて学習できるように3部に分けて構成しています。 第1部(第1章)は「基礎編」です。ここでは、今後、人工知能が中心となる社会で生きていくために必要最低限の知識についてまとめました。人工知能は何が得意で、何が不得意なのか、そして社会をどう変えていくのかについて解説しています。 第2部(第2~4章)は「ビジネス編」です。ここでは、ビジネスに人工知能を活用するに当たり、各業界の活用事例や今後どのような使われ方をするのかについて書いています。 また、人工知能を活用する際の注意事項を中心に、プロジェクト推進方法や国などの支援状況についても解説しています。 第3部は「技術編」です。ここでは、人工知能の仕組みについて解説しています。今後、データサイエンスや人工知能に関する知識は、エンジニアや人工知能のプロジェクトに関わる人にとっては必須の知識です。 本書を読めば、AIに関する一般向けの本にありがちな曖昧すぎてよく分からない、なぜそこにAIを使う必要があるのか理解できないといった疑問を解消できると思います。 第1章【基礎編】人工知能(AI)の世界 第2章【ビジネス編】産業別に見た人工知能事例と未来予想図 第3章【ビジネス編】人工知能活用に関する国の施策 第4章【ビジネス編】人工知能プロジェクトの進め方と注意点 第5章【技術編】機械学習 ~これまでの人工知能と歴史~ 第6章【技術編】ディープラーニング ~現在の人工知能~ 第7章【技術編】人工知能開発と運用管理 第8章【技術編】人工知能の最新技術 ~これからの人工知能~ 第9章 人工知能開発に関するいろいろなFAQ
広がるAI化格差と5年先を見据えた企業戦略 ▼技術から利用動向、制度政策に至るまで、国内と海外の人工知能の最新動向がすべてわかるAI白書の2020年版 DX(デジタルトランスフォーメーション)のための重要な技術であるAIの社会実装が進む一方、そのAI化で格差が広がっています。また、5Gのサービス開始、EU一般データ保護規則、米中間の対立など、AIを取り巻く環境は目まぐるしく変化しています。 第1章では、石角友愛氏(パロアルトインサイトCEO)と中島秀之 AI白書編集委員長(札幌市立大学理事長・学長)の対談、北野宏明 AI白書編集委員(ソニーコンピュータサイエンス研究所代表取締役社長・所長)と片岡 晃 IPA社会基盤センター長の対談を通じて、AIをめぐる日本の課題とビジネス戦略について解説。第2章「技術動向」では、AIに関する技術の概要と最新動向を整理し、第3章「利用動向」では国内外でのAI活用事例を紹介。さらに、AIの社会実装を支える環境として、第4章で「制度政策」、第5章で社会実装に係る課題解決の方向性(AI人材育成及びスタートアップエコシステム)について記載しています。 『AI白書2019』に最新情報を加え、大幅にアップデートしています。AIの基礎的な技術解説から、国内外の多様な導入事例、制度・政策面での取り組み、中国のAI動向データ、企業経営者の意識調査結果まで、AIにまつわる幅広い話題を網羅して収録。AIを実装し、DXを推進するにあたってのひとつの指針として、本書をご活用いただけます。 DX(デジタルトランスフォーメーション)のための重要な技術であるAIの社会実装。そのAI化で格差が広がっている。AIの技術や利用動向、制度政策、スタートアップエコシステムに至るまで、AIのすべてを解説 □第1章「2020年のAIとビジネス」 生産性やDXといった日本の課題、AI時代のビジネス戦略をテーマにした対談、など □第2章「技術動向」 AIを支える技術と最新動向、ディープラーニング、開発基盤、標準化・オープンプラットフォーム・信頼性、各国の研究開発の現状、など □第3章「利用動向」 日本と世界の分野別の利用動向、AI利用動向アンケート調査、AI導入予算・AI市場規模、中国のAI最新動向、など □第4章「制度政策動向」 AIに関する原則・ガイドライン、制度改革(モビリティ、データ流通、知的財産)、各国の政策動向、など □第5章「AI実装を推進するAI人材育成と地域スタートアップエコシステム」 スタートアップエコシステム、AI人材の育成、社会実装の課題と現状、など
サンプリング、サイン波、フーリエ変換、ディジタルフィルタ、PSG音源、アナログシンセサイザ、FM音源、PCM音源。音を作る原理をC言語のプログラムで体験学習。 サウンドプログラミングの基礎知識 サイン波を鳴らしてみよう サイン波を重ね合わせてみよう 周波数特性を分析してみよう 加算合成-足し算で音を作ってみよう 周波数特性を加工してみよう 減算合成-引き算で音を作ってみよう PSG音源-電子音を鳴らしてみよう アナログシンセサイザ-楽器音を鳴らしてみよう FM音源-金属音を鳴らしてみよう〔ほか〕
人工知能とは何か? 機械学習・ディープラーニングとは何かを、高クオリティなマンガとともに、くわしく・やさしく解説していきます。 人工知能がどのように発展してきたのか、私たちの未来をどのように変えていくのか、そして人工知能とどのように向き合っていくのかをテーマにストーリーを構成。人工知能という難しそうなテーマを、より身近に感じられるようになる一冊です。 Chapter1 人工知能の正体 ・「人間の脳」と「人工知能」 ・人工知能の定義 Chapter2 人工知能の歴史 ・人工知能の誕生-第1次AIブーム- ・コンピュータとの対話-第2次AIブーム- Chapter3 人工知能の新時代① ・第3次AIブームの始まり ・機械学習の広がりと課題 Chapter4 人工知能の新時代② ・ディープラーニングとは何か ・ディープラーニングによるブレイクするー Chapter5 人工知能と心 ・心と身体性 ・人工知能と創造性 Chapter6 人工知能が変えていく未来 ・AIを牽引する企業たち ・「眼を持つ機械」の活用 Chapter7 人工知能が人類にもたらすもの ・人工知能と倫理的課題 ・「シンギュラリティ」とその先の未来
【東京大学特任准教授 松尾 豊氏 推薦】 大人気「10秒で始める人工知能プログラミング学習サービス」の代表者がおくる、 人工知能プログラミングに必要な数学を、やさしく学ぶ参考書が登場! キホンのキホンからおさらいするから、ニガテな人でも大丈夫! 後半では、Pythonのコードを動かしてさらに理解を深められます! ■本書の目的 ・人工知能関連の書籍に現れる数式への抵抗感をなくし、専門書を読むための数学基礎力をつけます。 ・いくつかの人工知能のアルゴリズムを理解し、数式の意味を理解できるようにします。 ■本書の特長 ・ゼロからおさらいするので、誰でも読めます。 ・人工知能プログラミングに必要な分野に特化しています。 ・演習問題や例題で、理解を深められます。 ■本書の対象読者 ・人工知能アルゴリズムを用いてモデリングをしているが、その根底のアルゴリズムはブラックボックスであり、数学を復習したい方。 ・人工知能アルゴリズムを体系的に学びたいが、数学を忘れており、専門書に現れる数式が理解できない方。 ・人工知能アルゴリズムに興味があるが、ハードルが高いと感じている方。 ■目次 CHAPTER 1 数学基礎 中学1 年から高校の数学を復習し、機械学習で使う数学の「入門レベル」を固めます。 CHAPTER 2 微分 微分の概念や表現方法を学びます。機械学習では「ディープラーニング(深層学習)」「ニューラルネットワーク」「最小2 乗法」「勾配降下法」「誤差逆伝播法」などで微分を活用します。 CHAPTER 3 線形代数 高校の範囲に大学1 年で学ぶ線形代数を加え、ベクトル・行列・線形変換を学びます。線形代数は膨大なデータや複雑なシステムを扱うのに役立ちます。 CHAPTER 4 確率・統計 確率・統計は「傾向を知り、限られたデータから全体像を予測する」ために、機械学習で活用されます。分散・尤度・正規分布などの難しい用語もやさしく学びます。 CHAPTER 5 実践編1 回帰モデルで住宅価格を推定してみよう 「データから住宅価格を推定する」ことを題材に、線形回帰モデルを理解します。 CHAPTER 6 実践編2 自然言語処理で文学作品の作者を当てよう 「文学作品を分析する」ことを題材に、自然言語を数学的に表現する方法などを学びます。 CHAPTER 7 実践編3 ディープラーニングで手書き数字認識をしてみよう 「手書きの数字を認識させる」ことを題材に、ディープラーニングの一種であるDNNを、画像認識から学びます。 東京大学特任准教授 松尾 豊氏 推薦! 人工知能プログラミングに必要な数学を、ゼロから抜け漏れなく、体系的に学ぶ! 数学を復習したいエンジニアに! CHAPTER1 数学基礎 CHAPTER2 微分 CHAPTER3 線形代数 CHAPTER4 確率・統計 CHAPTER5 実践編1 回帰モデルで住宅価格を推定してみよう CHAPTER6 実践編2 自然言語処理で文学作品の作者を当てよう CHAPTER7 実践編3 ディープラーニングで手書き数字認識をしてみよう
「なぜディープラーニングが形を区別できるのか」が見えてくる!Excelと対話しながらしくみを解き明かす画期的な超入門書!初めてのAI学習に最適!難しい数学計算はExcelに任せてディープラーニングのしくみを動かしながら理解できる! 1章 初めてのディープラーニング(畳み込みニューラルネットワークのしくみは簡単 AIとディープラーニング) 2章 Excelの確認とその応用(利用するExcel関数はたったの7個 Excelの参照形式 ほか) 3章 ニューロンモデル(神経細胞の働き 神経細胞の働きを数式表現 ほか) 4章 ニューラルネットワークのしくみ(読み物としてのニューラルネットワークのしくみ ニューラルネットワークが手書き文字を識別 ほか) 5章 畳み込みニューラルネットワークのしくみ(読み物としての畳み込み-ニューラルネットワークのしくみ 畳み込みニューラルネットワークが手書き数字を識別 ほか) 付録
ディープラーニングの動作する数学の仕組みを解説。どの分野が必要かを知り、基本を理解し、どのように効いているかを学びます。 本書は、ディープラーニングを支え、ベースとなっている数学に焦点をあて、どのような仕組みで、どのように効いて、なぜ機能するのかの解説をしていきます。「ブラックボックス」と思われがちなディープラーニングの中身を理解していきます。 高校数学の知識を前提としながらも、必要な数学を復習しつつ、高校で習わない偏微分に関しては基本から必要な部分を解説して、ディープラーニングを支える数学の知識を学んでいきます。 「ディープラーニングという言葉は聞くが、どんなものなのか分からないので理解したい」「ブラックボックスと言われるディープラーニングの仕組みを知りたい」「ディープラーニングを学びたいけれど、数学の勉強のどこから手を付けていいか分からない」といった読者の興味に応える一冊です。 数学を学びながら、それがディープラーニングにどのように効いているのか分かることが重要です。その点を実感として理解することができれば、ディープラーニングの仕組みの本質が理解できたことにつながっていきます。そのためのディープラーニングの主要な概念の解説もしていきます。
自然言語処理編
ディープラーニング実装入門書の決定版! ニューラルネットワークの理論とディープラーニングの実装について丁寧に解説。実装には、Python(3.x)とディープラーニング向けライブラリKeras(2.x)、TensorFlow(2.x)、PyTorch(1.x)を用います。 本書では、自然言語処理をはじめとした時系列データ処理のためのディープラーニング・アルゴリズムに焦点を当てているのも大きな特徴の1つです。本書の[第1版](2017年)以降に次々と登場している新しい手法やモデルを丁寧に説明、記事も大幅にボリュームアップしました。 [本書の構成] 1章 数学の準備:ニューラルネットワークのアルゴリズムを理解するための数学の知識、偏微分と線形代数の基本を学びます。アルゴリズムが複雑になってもこの2つを押さえておけばきちんと理解できます。 2章 Pythonの準備:ディープラーニングのアルゴリズムを実装するため、Python環境の構築およびPythonの基本から代表的なライブラリの使い方までを解説します。 3章 ニューラルネットワーク:ニューラルネットワークとは何か、どういった手法かを解説します。単純パーセプトロン、ロジスティック回帰、多クラスロジスティック回帰、多層パーセプトロンを扱います。 4章 ディープニューラルネットワーク:ディープラーニングはニューラルネットワークのモデルの発展形です。ニューラルネットワークから「ディープ」ニューラルネットワークになるうえで発生する課題とそれを解決するテクニックについて解説します。 5章 リカレントニューラルネットワーク:ニューラルネットワークに「時間」という概念を取り込むとどのようなモデルになるのか。通常のディープラーニングのモデルではうまく扱うことができない時系列データの扱いに特化したモデルであるリカレントニューラルネットワーク(RNN)とその手法LSTM、GRUについて取り上げます。 6章 リカレントニューラルネットワークの応用:時系列データの扱いに関しては、自然言語処理で新しいモデルが考えられてきました。本章では、Encoder-Decoder、Attention、Transformerについて学んでいきます。 付録 ライブラリ内部の処理を理解するためのグラフの知識と、Pythonのデコレータ @tf.function の実装例、Keras、TensorFlow、PyTorchによるモデルの保存・読み込みについて解説します。 はじめに 1章 数学の準備 1.1 偏微分 1.2 線形代数 1.3 まとめ 1章の参考文献 2章 Python の準備 2.1 Python 2とPython 3 2.2 Anaconda ディストリビューション 2.3 Python の基本 2.4 NumPy 2.5 ディープラーニング向けライブラリ 2.6 まとめ 3章 ニューラルネットワーク 3.1 ニューラルネットワークとは 3.2 回路としてのニューラルネットワーク 3.3 単純パーセプトロン 3.4 ロジスティック回帰 3.5 多クラスロジスティック回帰 3.6 多層パーセプトロン 3.7 モデルの評価 3.8 まとめ 4章 ディープニューラルネットワーク 4.1 ディープラーニング向けライブラリの導入(Keras/TensorFlow/PyTorch) 4.2 ディープラーニングへの準備 4.3 活性化関数の工夫 4.4 ドロップアウトの導入 4.5 学習の効率化に向けて 4.6 学習率の設定 4.7 重みの初期値の設定 4.8 バッチ正規化 4.9 まとめ 4章の参考文献 5章 リカレントニューラルネットワーク 5.1 基本のアプローチ 5.2 LSTM 5.3 GRU 5.4 双方向リカレントニューラルネットワーク 5.5 埋め込み層における計算 5.6 まとめ 5章の参考文献 6章 リカレントニューラルネットワークの応用 6.1 Encoder-Decoder 6.2 Attention 6.3 Transformer 6.4 まとめ 6章の参考文献 付録 A.1 計算グラフ A.2 @tf.function A.3 モデルの保存と読み込み(Keras、TensorFlow、PyTorch) 索引
ディープラーニングの発展・応用手法を実装しながら学ぼう 本書ではディープラーニングの発展・応用手法を実装しながら学習していきます。ディープラーニングの実装パッケージとしてPyTorchを利用します。扱うタスク内容とディープラーニングモデルは次の通りで「ビジネスの現場でディープラーニングを活用するためにも実装経験を積んでおきたいタスク」という観点で選定しました。 [本書で学習できるタスク] 転移学習、ファインチューニング:少量の画像データからディープラーニングモデルを構築 物体検出(SSD):画像のどこに何が映っているのかを検出 セマンティックセグメンテーション(PSPNet):ピクセルレベルで画像内の物体を検出 姿勢推定(OpenPose):人物を検出し人体の各部位を同定しリンク GAN(DCGAN、Self-Attention GAN):現実に存在するような画像を生成 異常検知(AnoGAN、Efficient GAN):正常画像のみからGANで異常画像を検出 自然言語処理(Transformer、BERT):テキストデータの感情分析を実施 動画分類(3DCNN、ECO):人物動作の動画データをクラス分類 本書は第1章から順番に様々なタスクに対するディープラーニングモデルの実装に取り組むことで高度かつ応用的な手法が徐々に身につく構成となっています。各ディープラーニングモデルは執筆時点でState-of-the-Art(最高性能モデル)の土台となっており、実装できるようになればその後の研究・開発に役立つことでしょう。 ディープラーニングの発展・応用手法を楽しく学んでいただければ幸いです。 実装環境 ・読者のPC(GPU環境不要)、AnacondaとJupyter Notebook、AWSを使用したGPUサーバー ・AWSの環境:p2.xlargeインスタンス、Deep Learning AMI(Ubuntu)マシンイメージ(OS Ubuntu 16.04|64ビット、NVIDIA K80 GPU、Python 3.6.5、conda 4.5.2、PyTorch 1.0.1) 第1章 画像分類と転移学習(VGG) 1.1 学習済みのVGGモデルを使用する方法 1.2 PyTorchによるディープラーニング実装の流れ 1.3 転移学習の実装 1.4 Amazon AWSのクラウドGPUマシンを使用する方法 1.5 ファインチューニングの実装 第2章 物体検出(SSD) 2.1 物体検出とは 2.2 Datasetの実装 2.3 DataLoaderの実装 2.4 ネットワークモデルの実装 2.5 順伝搬関数の実装 2.6 損失関数の実装 2.7 学習と検証の実施 2.8 推論の実施 第3章 セマンティックセグメンテーション(PSPNet) 3.1 セマンティックセグメンテーションとは 3.2 DatasetとDataLoaderの実装 3.3 PSPNetのネットワーク構成と実装 3.4 Featureモジュールの解説と実装 3.5 Pyramid Poolingモジュールの解説と実装 3.6 Decoder、AuxLossモジュールの解説と実装 3.7 ファインチューニングによる学習と検証の実施 3.8 セマンティックセグメンテーションの推論 第4章 姿勢推定(OpenPose) 4.1 姿勢推定とOpenPoseの概要 4.2 DatasetとDataLoaderの実装 4.3 OpenPoseのネットワーク構成と実装 4.4 Feature、Stageモジュールの解説と実装 4.5 TensorBoardXを使用したネットワークの可視化手法 4.6 OpenPoseの学習 4.7 OpenPoseの推論 第5章 GANによる画像生成(DCGAN、Self-Attention GAN) 5.1 GANによる画像生成のメカニズムとDCGANの実装 5.2 DCGANの損失関数、学習、生成の実装 5.3 Self-Attention GANの概要 5.4 Self-Attention GANの学習、生成の実装 第6章 GANによる異常検知(AnoGAN、Efficient GAN) 6.1 GANによる異常画像検知のメカニズム 6.2 AnoGANの実装と異常検知の実施 6.3 Efficient GANの概要 6.4 Efficient GANの実装と異常検知の実施 第7章 自然言語処理による感情分析(Transformer) 7.1 形態素解析の実装(Janome、MeCab+NEologd) 7.2 torchtextを用いたDataset、DataLoaderの実装 7.3 単語のベクトル表現の仕組み(word2vec、fastText) 7.4 word2vec、fastTextで日本語学習済みモデルを使用する方法 7.5 IMDb(Internet Movie Database)のDataLoaderを実装 7.6 Transformerの実装(分類タスク用) 7.7 Transformerの学習・推論、判定根拠の可視化を実装 第8章 自然言語処理による感情分析(BERT) 8.1 BERTのメカニズム 8.2 BERTの実装 8.3 BERTを用いたベクトル表現の比較(bank:銀行とbank:土手) 8.4 BERTの学習・推論、判定根拠の可視化を実装 第9章 動画分類(3DCNN、ECO) 9.1 動画データに対するディープラーニングとECOの概要 9.2 2D Netモジュール(Inception-v2)の実装 9.3 3D Netモジュール(3DCNN)の実装 9.4 Kinetics動画データセットをDataLoaderに実装 9.5 ECOモデルの実装と動画分類の推論実施
大学で学ぶ数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 【本書の目的】 現在、人工知能関連のプロダクト・サービスが数多く見受けられるようになりました。 人工知能関連の開発に機械学習の基礎知識は必須です。 本書はそうした機械学習の基礎知識を学びたいエンジニアに向けた書籍です。 【本書の特徴】 本書は機械学習の基本について、数学の知識をもとに、 実際にPythonでプログラムしながら学ぶことができる書籍です。 ・最新のPython 3.7に対応 ・学習内容を「要点整理」で復習 ・数式とコードをつなげたわかりやすい解説 【読者が得られること】 本書を読み終えた後には、機械学習のしくみとプログラミング手法を理解できます。 【対象読者】 機械学習の基礎を学びたい理工学生・エンジニア 【目次】 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ 第1章 機械学習の準備 1.1 機械学習について 1.2 Pythonのインストール 1.3 Jupyter Notebook 1.4 KerasとTensorFlowのインストール 第2章 Pythonの基本 2.1 四則演算 2.2 変数 2.3 型 2.4 print文 2.5 list(リスト、配列変数) 2.6 tuple(タプル) 2.7 if文 2.8 for文 2.9 ベクトル 2.10 行列 2.11 行列(ndarray)の四則演算 2.12 スライシング 2.13 条件を満たすデータの書き換え 2.14 Help 2.15 関数 2.16 ファイル保存 第3章 グラフの描画 3.1 2次元のグラフを描く 3.2 3次元のグラフを描く 第4章 機械学習に必要な数学の基本 4.1 ベクトル 4.2 和の記号 4.3 積の記号 4.4 微分 4.5 偏微分 4.6 行列 4.7 指数関数と対数関数 第5章 教師あり学習:回帰 5.1 1次元入力の直線モデル 5.2 2次元入力の面モデル 5.3 D次元線形回帰モデル 5.4 線形基底関数モデル 5.5 オーバーフィッティングの問題 5.6 新しいモデルの生成 5.7 モデルの選択 5.8 まとめ 第6章 教師あり学習:分類 6.1 1次元入力2クラス分類 6.2 2次元入力2クラス分類 6.3 2次元入力3クラス分類 第7章 ニューラルネットワーク・ディープラーニング 7.1 ニューロンモデル 7.2 ニューラルネットワークモデル 7.3 Kerasでニューラルネットワークモデル 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 8.1 MNISTデータベース 8.2 2層フィードフォワードネットワークモデル 8.3 ReLU活性化関数 8.4 空間フィルター 8.5 畳み込みニューラルネットワーク 8.6 プーリング 8.7 ドロップアウト 8.8 集大成のMNIST認識ネットワークモデル 第9章 教師なし学習 9.1 2次元入力データ 9.2 K-means法 9.3 混合ガウスモデル 第10章 要点のまとめ 要点のまとめ
東大 松尾研究室が提供するあの人気講座が待望の書籍化! 本書は、2017年と2018年に東京大学で実施された「グローバル消費インテリジェンス寄付 講座」の学生向けオフライン講義と、社会人向けオンライン講座で使われた教材がベースになっています。 約400名ほどの受講枠(2年間)に、のべ1,800人以上の応募があった人気の講義です。この本のベースとなるコンテンツはJupyter Notebook形式で公開されていますが、この内容をさらに精査、ブラッシュアップし、読みやすく整えたものが本書になります。 ●本書の内容 本書には、データサイエンティストになるための基礎をつめこんでいます。データサイエンティストは、Pythonや確率・統計、機械学習など、幅広くさまざまな分野の知識を必要とします。 すべての分野を1冊で学ぶことは無理ですので、各分野で深入りはせず基礎的な事項を取り扱っています。データサイエンティストになるための地図と羅針盤のような位置づけとなることをイメージしています。 この本は主にPython 3を使って、基本的なプログラムの書き方、データの取得、読み込み、そのデータ操作からはじまり、さまざまなPythonのライブラリの使い方、確率統計の手法、機械学習(教師あり学習、教師なし学習とチューニング)の使い方についても学びます。取り扱っているデータは、マーケティングに関するデータやログデータ、金融時系列データなどさまざまで、モデリングの前にそれらを加工する手法も紹介しています。データサイエンティストになるには、どれも必要なスキルです。 本書には、さらに以下の3つの特徴があります。 ・実際のデータを使って手を動かしながら、データサイエンスのスキルを身に付けることができる ・データ分析の現場で使える実践的な内容(データ前処理など)が含まれている ・練習問題や総合問題演習など実際に頭を使って考える内容がたくさんある この本に書いてあることを実践し、読み終えた後には、実際の現場でデータ分析ができるようになるはずです。 ●この本の対象読者 この本は、プログラミングの経験があり、理系の大学1~2年生程度の教養課程の数学(線形代数、微分積分学、確率統計の基礎など)を終えている方を対象にしています。具体的には、勉強熱心な大学3~4年生の理系の学生さんや大学院生の方、また社会人になってデータサイエンスを学ぼうという意欲の高い方たちが対象です。データサイエンスの入門レベルから中級レベルの手前までを考えている人に最適で、本書のゴールもデータサイエンス入門レベルを卒業できることを想定しています。 "Contents Chapter 1 本書の概要とPythonの基礎 1-1 データサイエンティストの仕事 1-1-1 データサイエンティストの仕事 1-1-2 データ分析のプロセス 1-1-3 本書の構成 1-1-4 本書を読み進めるのに役立つ文献 1-1-5 手を動かして習得しよう 1-2 Pythonの基礎 1-2-1 Jupyter Notebookの使い方 1-2-2 Pythonの基礎 1-2-3 リストと辞書型 1-2-4 条件分岐とループ Column format記法と%記法 1-2-5 関数 Practice 練習問題1-1 Practice 練習問題1-2 1-2-6 クラスとインスタンス Practice 1章 総合問題 Chapter 2 科学計算、データ加工、グラフ描画ライブラリの使い方の基礎 2-1 データ分析で使うライブラリ 2-1-1 ライブラリの読み込み 2-1-2 マジックコマンド 2-1-3 この章で使うライブラリのインポート 2-2 Numpyの基礎 2-2-1 Numpyのインポート 2-2-2 配列操作 2-2-3 乱数 Column Numpyは高速 2-2-4 行列 Practice 練習問題2-1 練習問題2-2 練習問題2-3 2-3 Scipyの基礎 2-3-1 Scipyのライブラリのインポート 2-3-2 行列計算 2-3-3 ニュートン法 Practice 練習問題2-4 練習問題2-5 練習問題2-6 2-4 Pandasの基礎 2-4-1 Pandasのライブラリのインポート 2-4-2 Seriesの使い方 2-4-3 DataFrameの使い方 2-4-4 行列操作 2-4-5 データの抽出 2-4-6 データの削除と結合 2-4-7 集計 2-4-8 値のソート 2-4-9 nan(null)の判定 Practice 練習問題2-7 Practice 練習問題2-8 Practice 練習問題2-9 2-5 Matplotlibの基礎 2-5-1 Matplotlibを使うための準備 2-5-2 散布図 2-5-3 グラフの分割 2-5-4 関数グラフの描画 2-5-5 ヒストグラム Column さまざまなデータのビジュアル化 Practice 練習問題2-10 Practice 練習問題2-11 Practice 練習問題2-12 Practice 2章 総合問題 Chapter 3 記述統計と単回帰分析 3-1 統計解析の種類 3-3-1 記述統計と推論統計 3-3-2 この章で使うライブラリのインポート 3-2 データの読み込みと対話 3-2-1 インターネットなどで配布されている対象データの読み込み 3-2-2 データの読み込みと確認 3-2-3 データの性質を確認する Column 「変数」という用語について 3-2-4 量的データと質的データ 3-3 記述統計 3-3-1 ヒストグラム 3-3-2 平均、中央値、最頻値 3-3-3 分散と標準偏差 3-3-4 要約統計量とパーセンタイル値 3-3-5 箱ひげ図 3-3-6 変動係数 3-3-7 散布図と相関係数 3-3-8 すべての変数のヒストグラムや散布図を描く Practice 練習問題3-1 Practice 練習問題3-2 Practice 練習問題3-3 3-4 単回帰分析 3-4-1 線形単回帰分析 3-4-2 決定係数 Practice 練習問題3-4 Practice 練習問題3-5 Practice 練習問題3-6 Practice 3章 総合問題 Chapter 4 確率と統計の基礎 4-1 確率と統計を学ぶ準備 4-1-1 この章の前提知識 4-1-2 この章で使うライブラリのインポート 4-2 確率 4-2-1 数学的確率 4-2-2 統計的確率 4-2-3 条件付き確率と乗法定理 4-2-4 独立と従属 4-2-5 ベイズの定理 Practice 練習問題4-1 Practice 練習問題4-2 Practice 練習問題4-3 4-3 確率変数と確率分布 4-3-1 確率変数、確率関数、分布関数、期待値 4-3-2 さまざまな分布関数 4-3-3 カーネル密度関数 Practice 練習問題4-4 Practice 練習問題4-5 Practice 練習問題4-6 4-4 応用:多次元確率分布 4-4-1 同時確率関数と周辺確率関数 4-4-2 条件付き確率関数と条件付き期待値 4-4-3 独立の定義と連続分布 4-5 推計統計学 4-5-1 大数の法則 4-5-2 中心極限定理 4-5-3 標本分布 Practice 練習問題4-7 Practice 練習問題4-8 Practice 練習問題4-9 4-6 統計的推定 4-6-1 推定量と点推定 4-6-2 不偏性と一致性 4-6-3 区間推定 4-6-4 推定量を求める Practice 練習問題4-10 Practice 練習問題4-11 Practice 練習問題4-12 4-7 統計的検定 4-7-1 検定 4-7-2 第1種の過誤と第2種の過誤 4-7-3 ビッグデータに対する検定の注意 Practice 練習問題4-13 Practice 4章 総合問題 Chapter 5 Pythonによる科学計算(NumpyとScipy) 5-1 概要と事前準備 5-1-1 この章の概要 5-1-2 この章で使うライブラリのインポート 5-2 Numpyを使った計算の応用 5-2-1 インデックス参照 Practice 練習問題5-1 Practice 練習問題5-2 Practice 練習問題5-3 5-2-2 Numpyの演算処理 Practice 練習問題5-4 Practice 練習問題5-5 Practice 練習問題5-6 5-2-3 配列操作とブロードキャスト Practice 練習問題5-7 Practice 練習問題5-8 Practice 練習問題5-9 5-3 Scipyを使った計算の応用・ 5-3-1 補間 5-3-2 線形代数:行列の分解 Practice 練習問題5-10 Practice 練習問題5-11 Practice 練習問題5-12 Practice 練習問題5-13 Practice 練習問題5-14 5-3-3 積分と微分方程式 Practice 練習問題5-15 Practice 練習問題5-16 5-3-4 最適化 Practice 練習問題5-17 Practice 練習問題5-18 Practice 5章 総合問題 Chapter 6 Pandasを使ったデータ加工処理 6-1 概要と事前準備 6-1-1 この章で使うライブラリのインポート 6-2 Pandasの基本的なデータ操作 6-2-1 階層型インデックス Practice 練習問題6-1 Practice 練習問題6-2 Practice 練習問題6-3 6-2-2 データの結合 Practice 練習問題6-4 練習問題6-5 練習問題6-6 6-2-3 データの操作と変換 Practice 練習問題6-7 Practice 練習問題6-8 Practice 練習問題6-9 6-2-4 データの集約とグループ演算 Practice 練習問題6-10 Practice 練習問題6-11 Practice 練習問題6-12 6-3 欠損データと異常値の取り扱いの基礎 6-3-1 欠損データの扱い方 Practice 練習問題6-13 Practice 練習問題6-14 Practice 練習問題6-15 6-3-2 異常データの扱い方 6-4 時系列データの取り扱いの基礎 6-4-1 時系列データの処理と変換 Practice 練習問題6-16 6-4-2 移動平均 Practice 練習問題6-17 Practice 6章 総合問題 Chapter 7 Matplotlibを使ったデータ可視化 7-1 データの可視化 7-1-1 データの可視化について 7-1-2 この章で使うライブラリのインポート 7-2 データ可視化の基礎 7-2-1 棒グラフ 7-2-2 円グラフ Practice 練習問題7-1 Practice 練習問題7-2 Practice 練習問題7-3 7-3 応用:金融データの可視化 7-3-1 可視化する金融データ 7-3-2 ローソクチャートを表示するライブラリ 7-4 応用:分析結果の見せ方を考えよう 7-4-1 資料作成のポイントについて Practice 7章 総合問題 Column 移動平均時系列データと対数時系列データ Chapter 8 機械学習の基礎(教師あり学習) 8-1 機械学習の全体像 8-1-1 機械学習とは 8-1-2 教師あり学習 8-1-3 教師なし学習 8-1-4 強化学習 8-1-5 この章で使うライブラリのインポート 8-2 重回帰 8-2-1 自動車価格データの取り込み 8-2-2 データの整理 8-2-3 モデル構築と評価 8-2-4 モデル構築とモデル評価の流れのまとめ Practice 練習問題8-1 8-3 ロジスティック回帰 8-3-1 ロジスティック回帰の例 8-3-2 データの整理 8-3-3 モデル構築と評価 8-3-4 スケーリングによる予測精度の向上 Practice 練習問題8-2 Practice 練習問題8-3 8-4 正則化項のある回帰:ラッソ回帰、リッジ回帰 8-4-1 ラッソ回帰、リッジ回帰の特徴 8-4-2 重回帰とリッジ回帰の比較 Practice 練習問題8-4 8-5 決定木 8-5-1 キノコデータセット 8-5-2 データの整理 8-5-3 エントロピー:不純度の指標 8-5-4 情報利得:分岐条件の有益さを測る 8-5-5 決定木のモデル構築 Practice 練習問題8-5 8-6 k-NN(k近傍法) 8-6-1 k-NNのモデル構築 Practice 練習問題8-6 Practice 練習問題8-7 8-7 サポートベクターマシン 8-7-1 サポートベクターマシンのモデル構築 Practice 練習問題8-8 Practice 8章 総合問題 Chapter 9 機械学習の基礎(教師なし学習) 9-1 教師なし学習 9-1-1 教師なしモデルの種類 9-1-2 この章で使うライブラリのインポート 9-2 クラスタリング 9-2-1 k-means法 9-2-2 k-means法でクラスタリングする 9-2-3 金融マーケティングデータをクラスタリングする 9-2-4 エルボー法によるクラスター数の推定 9-2-5 クラスタリング結果の解釈 9-2-6 k-means法以外の手法 Practice 練習問題9-1 9-3 主成分分析 9-3-1 主成分分析を試す 9-3-2 主成分分析の実例 Practice 練習問題9-2 9-4 マーケットバスケット分析とアソシエーションルール 9-4-1 マーケットバスケット分析とは 9-4-2 マーケットバスケット分析のためのサンプルデータを読み込む 9-4-3 アソシエーションルール Practice 9章 総合問題 Chapter 10 モデルの検証方法とチューニング方法 10-1 モデルの評価と精度を上げる方法とは 10-1-1 機械学習の課題とアプローチ 10-1-2 この章で使うライブラリのインポート 10-2 モデルの評価とパフォーマンスチューニング 10-2-1 ホールドアウト法と交差検証法 10-2-2 パフォーマンスチューニング:ハイパーパラメータチューニング Practice 練習問題10-1 Practice 練習問題10-2 10-2-3 パフォーマンスチューニング:特徴量の扱い 10-2-4 モデルの種類 10-3 モデルの評価指標 10-3-1 分類モデルの評価:混同行列と関連指標 10-3-2 分類モデルの評価:ROC曲線とAUC Practice 練習問題10-3 10-3-3 回帰モデルの評価指標 Practice 練習問題10-4 10-4 アンサンブル学習 10-4-1 バギング Practice 練習問題10-5 10-4-2 ブースティング 10-4-3 ランダムフォレスト、勾配ブースティング Practice 練習問題10-6 10-4-4 今後の学習に向けて Practice 練習問題10-7 Practice 10 章 総合問題 Chapter 11 総合演習問題 11-1 総合演習問題 11-1-1 総合演習問題(1) 11-1-2 総合演習問題(2) 11-1-3 総合演習問題(3) 11-1-4 総合演習問題(4) 11-1-5 総合演習問題(5) 11-1-6 総合演習問題(6) 11-1-7 参考:今後のデータ分析に向けて Appendix A-1 本書の環境構築について A-1-1 Anacondaについて A-1-2 Anacondaのパッケージをダウンロードする A-1-3 Anacondaをインストールする A-1-4 pandas-datareaderおよびPlotlyのインストール A-2 練習問題解答 A-2-1 Chapter1 練習問題 A-2-2 Chapter2 練習問題 A-2-3 Chapter3 練習問題 A-2-4 Chapter4 練習問題 A-2-5 Chapter5 練習問題 A-2-6 Chapter6 練習問題 A-2-7 Chapter7 練習問題 A-2-8 Chapter8 練習問題 A-2-9 Chapter9 練習問題 A-2-10 Chapter10 練習問題 A-2-11 Chapter11 総合演習問題 Column ダミー変数と多重共線性 A-3 参考文献・参考URL A-3-1 参考文献 A-3-2 参考URL
新シラバスに完全対応!G検定受験者必携の問題集が増補改訂して再登場!2021年春に公開された最新シラバスに沿って収録問題を増補。新たに「人工知能と法律・契約および動向」の章を追加して、個人情報保護法に関する設問、道路交通法に関する設問(自動運転など)、知財・発明・AI創作物の著作権に関する設問、AI開発契約に関する設問(契約ガイドラインなど)、国や自治体のAI活用方針に関する設問などにバッチリ対応しました。また、最新技術動向として、XAI、DX、自然言語処理、音声認識、強化学習最新技術などの設問なども追加し、近々の出題傾向もしっかり学習できます。巻末には、実際の試験と同等の出題数による模擬試験「総仕上げ問題」を収録。試験直前の実力診断までしっかりサポート!
日本ディープラーニング協会が実施している「ディープラーニングG検定ジェネラリスト」試験向けの資格試験対策用テキスト&問題集 本書は、日本ディープラーニング協会が実施している「ディープラーニングG検定ジェネラリスト」試験向けの資格試験対策用のテキスト&問題集です。試験に合格するために必要な知識習得と問題対策を一冊にまとめました。簡潔なレイアウトにし、数式をなるべく使わず、わかりやすい文章や図で説明しています。ディープラーニングをビジネスで活用したいと考えている人が対象読者となります。 試験について(試験概要) 合格のための攻略法 G検定ジェネラリスト合格への効率学習ロードマップ 本書の5つの工夫! 第1章 人工知能(AI)をめぐる歴史と動向 Theme1 人工知能(AI)とは(人工知能の定義) Theme2 人工知能をめぐる動向 Theme3 人工知能分野の問題 章末問題・解答 第2章 数学的基礎 Theme1 確率統計 Theme2 情報理論 Theme3 行列・線形代数 Theme4 基礎解析 章末問題・解答 第3章 機械学習 Theme1 機械学習の基礎 Theme2 教師あり学習 Theme3 教師なし学習 章末問題・解答 第4章 機械学習の実装 Theme1 実装の全体像・事前準備 Theme2 前処理 Theme3 モデルの学習 Theme4 モデルの評価 章末問題・解答 第5章 ディープラーニングの概要 Theme1 ディープラーニングの特徴 Theme2 多層パーセプトロン Theme3 確率的最急降下法 Theme4 ニューラルネットワークの歴史 章末問題・解答 第6章 ディープラーニングの基本 Theme1 畳込みニューラルネットワーク Theme2 再帰型ニューラルネットワーク Theme3 自己符号化器(Autoencoder) Theme4 深層強化学習 Theme5 その他の手法 章末問題・解答 第7章 ディープラーニングの研究分野 Theme1 画像認識 Theme2 自然言語処理 Theme3 音声処理 Theme4 強化学習 章末問題・解答 第8章 ディープラーニングの産業展開 Theme1 製造業 Theme2 自動車産業 Theme3 インフラ・農業 Theme4 その他の事業 章末問題・解答 第9章 ディープラーニングの制度政策などの動向 Theme1 知的財産 Theme2 原則・ガイドラインと制度・政策 章末問題・解答
人気の「ディープラーニングG検定」試験を徹底分析! 試験に出る知識と問題で効率よく学習できる、テキスト&問題集。 人気の「ディープラーニングG検定」合格のために、本試験を徹底分析! 試験に出る知識を効率よく習得し、出題実績の高いテーマの問題演習もできるオールインワンのテキスト&問題集です。 ディープラーニングとは、現在AI(人工知能)の学習法の主流となっている学習手法です。そのため、ディープラーニングについて知ることは、AIについて知ることと言っても過言ではありません。 ディープラーニング「G検定」は、専門家ではない一般のビジネスパーソンや学生を対象としており、回を重ねるほどに受験者が著しく増加している注目の検定試験です。 本書は、過去に実施された本試験を徹底的に分析し、「出るところだけ」をわかりやすいテキストとしてまとめました。また、アウトプット演習として、過去問分析にもとづく予想問題を作成。本試験1回分を超える数の問題を解説付きで収録しています。1冊でインプット&アウトプット学習を効率よくできるおすすめの対策本です。 【本書の特長】 ■ディープラーニングG検定の最新シラバスに基づいた章構成で体系的に、また、「出るところだけ」を効率的に学習できます! ■分野・テーマごとに最重要な知識を「Super Summary」としてまとめました。学習を始める前に概略・全体像をつかむために、また、本試験の直前チェックとして役立ちます。 ■テキスト部分は、説明を「出るところだけ」に絞りました。また、図表を豊富に掲載し、知識をわかりやすく習得できます。 ■問題演習は、出題実績の高いテーマを厳選。また、本試験を超える問題数を収録し、この一冊だけで十分なアウトプット学習ができるようにしました。
本書では、機械学習の各コンセプトについて、理論的背景とPythonコーディングの実際を解説。初期の機械学習アルゴリズムから、ニューラルネットワーク(CNN/RNN)までの手法を取り上げます。Python関連ライブラリとしてはscikit‐learnやTensorFlowなどを使用。第2版では、第1版への読者のフィードバックを随所に反映し、ライブラリの更新に対応しました。13章以降はほとんど新規の書き下ろしです。本書は、機械学習を本格的に理解・実践するのに不可欠な一冊となっています。 「データから学習する能力」をコンピュータに与える 分類問題-単純な機械学習アルゴリズムのトレーニング 分類問題-機械学習ライブラリscikit‐learnの活用 データ前処理-よりよいトレーニングセットの構築 次元削減でデータを圧縮する モデルの評価とハイパーパラメータのチューニングのベストプラクティス アンサンブル学習-異なるモデルの組み合わせ 機械学習の適用1-感情分析 機械学習の適用2-Webアプリケーション 回帰分析-連続値をとる目的変数の予測〔ほか〕
「人工知能を使ったプロジェクト」でチャンスをつかむ! 世の中で氾濫している「人工知能・AI」という言葉に惑わされないようにするため、人工知能についての正しい知識を身につけ、理解することが必要です。 人工知能分野の発展に貢献しているのが 機械学習・深層学習(ディープラーニング)と呼ばれる技術で「人工知能(AI)を使ってなにかプロジェクトをやってほしい」と言われたとき「ビジネス課題を機械学習・深層学習でどのように解決すればよいか」と置き換えて考えればよいケースがほとんどです。 本書では、あいまいな状態になっているビジネス上の課題を機械学習を試すことのできるような形に課題を書き換えたり、人工知能の代表的な手法である推論・探索、知識表現、機械学習、深層学習の各手法をフレームワークとして考え、実際のビジネスで活用できるといった“AI的思考力”を高める方法を解説していきます。 また人工知能は万能ではなく、ビジネス上における課題は千差万別です。本書の目指すところは「人工知能で解決できるものなのか」を自ら判断し、「人工知能のどの技術を使えばよいのか」が分かるようになることです。 人工知能技術の大部分は数学によって支えられていますが、本書はあくまでも「ビジネスで人工知能を活用するために知っておくべきこと」をまとめたものですので“難しい数式”は一切出てきません(もちろん、プログラミングも)。 『機械学習・深層学習という言葉は聞いたことはあるけれど、よく分からない』『ビジネス課題に適用できる自信がない』『どのように評価すればよいのか検討がつかない』といった方にとって、本書は役に立つはずです。 イントロダクション 1 [知識編] 人工知能とは 1.1 そもそも人工知能をつくる目的は? 「面倒くさい」が技術を進歩させる / ビジネスも「効率化」するのではなく「楽」をする 1.2 その人工知能「どの」人工知能? 強い人工知能と弱い人工知能 / 「弱さ」にも種類がある 1.3 知能を得るには知識が必要 思考が早い人工知能 ―第1次ブーム / 何を思考すればいい? / 博識な人工知能 第2次ブーム / あいまいな知識は人間だけのもの / 知識だけで知能はできない 1.4 人間が頑張るから機械が学習するへ 学習とは、パターンに分けること / パターンに分けるとは、知識を身につけること / 学習する人工知能 ―第3次ブーム 2 [実用編] 機械学習:問題を整理し解決する 2.1 問題を整理する 課題のパターンを整理する / 課題設定を整理する 2.2 問題へのアプローチ 人間も機械も、知らないものは知らない / アプローチのときは、三角関係を意識する 2.3 学習を評価する 評価のために未知をつくりだす / 評価の落とし穴に注意 / 数値が悪くても「いい」場合がある / 評価のインパクトは%になる 2.4 推薦問題を考える 3 [発展編] 深層学習というブレイクスルー 3.1 深層学習は「どこが」すごいのか? 特徴を捉えないと予測はできない / 脳みそをモデル化する / テクノロジーの進化は単独では成し得ない 3.2 深層学習は「どこで」すごいのか? 4 [実践編]ビジネスでAIを展開する 4.1 中を育てるのか 外に頼むのか データサイエンティストなのか 機械学習エンジニアなのか / ブーム最大の貢献は環境が整ったこと 4.2 機械学習に必要なものを知る (再び)ブーム最大の貢献は環境が整ったこと 4.3 機械学習なのか 統計なのか エピローグ