についてお探し中...

【2025年】「音声合成」のおすすめ 本 66選!人気ランキング

この記事では、「音声合成」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. Pythonで学ぶ音声合成 機械学習実践シリーズ
  2. イラストで学ぶ 音声認識 (KS情報科学専門書)
  3. フリーソフトでつくる音声認識システム パターン認識・機械学習の初歩から対話システムまで
  4. 機械学習による音声認識 (音響テクノロジーシリーズ 24)
  5. おしゃべりなコンピュータ 音声合成技術の現在と未来 (丸善ライブラリー)
  6. 音声認識 (機械学習プロフェッショナルシリーズ)
  7. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  8. 音声分析合成 (音響テクノロジーシリーズ 22)
  9. Pythonで学ぶフーリエ解析と信号処理
  10. サウンドプログラミング入門――音響合成の基本とC言語による実装 (Software Design plus)
他56件
No.1
100
みんなのレビュー
まだレビューはありません
No.7
67
みんなのレビュー
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
@@SHEQu
No.9
67
みんなのレビュー
まだレビューはありません
No.11
67
みんなのレビュー
まだレビューはありません
No.12
67
みんなのレビュー
まだレビューはありません
No.16
67
みんなのレビュー
まだレビューはありません
No.20
66
みんなのレビュー
まだレビューはありません
No.25
59

聴覚系や脳が音をどのように処理し、どのように集約して機械に入力すれば日常生活の特定の場面で活用できるかを詳説した書。 聴覚系や脳が音をどのように処理し、その知識をどのようにアルゴリズムにまとめ、集約して機械に入力すれば日常生活の特定の場面で活用できるかを詳説したガイド。 聴覚系や脳が音をどのように処理し、その知識をどのようにアルゴリズムにまとめ、どのように集約して機械に入力すれば日常生活の特定の場面で活用できるかを詳説したガイド。前半では、機械聴覚の土台となる基礎科学の解説と、効率的なシステム構築法の問題提示とその対処法について説明。後半では、聴覚系モデルを介して処理されたオーディオ信号を、補聴器や音楽情報検索、自動音声認識などの機械学習およびニューラルネットワーク分野への応用についても解説。 リチャード・F・ライオン著/根本 幾・田中慶太 訳;0501;01;聴覚系や脳が音を処理する理論をモデル化し、それをコピュータや機械で活用する方法を解説した書。;20210102

みんなのレビュー
まだレビューはありません
No.26
59
みんなのレビュー
まだレビューはありません
No.29
59
みんなのレビュー
まだレビューはありません
No.31
58

強化学習編

みんなのレビュー
強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。
No.35
58
みんなのレビュー
まだレビューはありません
No.36
58
みんなのレビュー
まだレビューはありません
No.39
58
みんなのレビュー
まだレビューはありません
No.41
58
みんなのレビュー
まだレビューはありません
No.42
58

FINAL FANTASY XV の人工知能 - ゲームAIから見える未来

株式会社スクウェア・エニックス『FFXV』AIチーム
ボーンデジタル
みんなのレビュー
まだレビューはありません
No.49
58

プログラミングの基本とともに情報科学の基礎を,Pythonを用いて学ぶテキスト.データ処理・AIなどの話題を扱い,基礎から本質までを学ぶことができる. まえがき 第1章 はじめに  1.1 なぜプログラミングを学ぶのか  1.2 プログラミングの学び方  1.3 プログラミングを通して見えてくる世界  1.4 本書の構成  1.5 参考文献 第2章 まずは使ってみる  2.1 プログラミング環境の準備と起動   2.1.1 Pythonプログラミング環境の入手     2.1.2 プログラム開発環境の準備と起動   2.1.3 プログラミング環境の起動と終了   2.1.4 本書で用いるライブラリのインストール  2.2 簡単な計算をしてみる  2.3 整数と小数  2.4 変数  2.5 コメント  2.6 入力のルールとエラー  2.7 学んだことのまとめ  練習問題 第3章 プログラムを作ろう  3.1 プログラムの読み込み  3.2 関数  3.3 print関数  3.4 インデント  3.5 ライブラリ  3.6 【発展】値を返さない関数  3.7 【発展】変数のスコープ  3.8 学んだことのまとめ  練習問題 第4章 データ処理の基本:成績の集計  4.1 配列:多くのデータをひとまとめに  4.2 点数の総和と平均  4.3 テストによる結果の確認と可視化  4.4 【発展】for文についてもう少し  4.5 分散の計算と誤差  4.6 最高点の計算  4.7 さまざまなif文  4.8 真偽値  4.9 さまざまな試験科目がある場合  4.10 文字列  4.11 【発展】型  4.12 学んだことのまとめ  練習問題 第5章 ライフゲーム  5.1 ライフゲームとは  5.2 ライフゲームのプログラム   5.2.1 2次元配列による盤面の構成    5.2.2 周囲の生命を数える   5.2.3 各セルの次世代の計算    5.2.4 次世代の盤面の計算    5.2.5 複数世代のシミュレーションを行う   5.3 ライフゲームの可視化  5.4 モジュール化  5.5 いろいろな絵を描いてみよう  5.6 【発展】配列のさまざまな機能  5.7 【発展】配列とコピー  練習問題 第6章 放物運動のシミュレーション  6.1 運動方程式と差分化  6.2 放物運動シミュレーションプログラムの作成  6.3 放物運動シミュレーションプログラムの改善   6.3.1 可視化による正しさの認識    6.3.2 モジュール化再訪   6.4 【発展】オブジェクト指向  6.5 breakを伴う繰返し  練習問題 幕間:テストとデバッグの基本 第7章 p値の計算  7.1 p値とは  7.2 p値を計算するプログラム  7.3 組合せ数のさまざまな計算方法   7.3.1 階乗を使う方法   7.3.2 パスカルの三角形を使う方法   7.3.3 漸化式を使う方法   7.4 それぞれの方法の実行時間  7.5 アルゴリズムの計算量とO記法  7.6 再帰についてもう少し  7.7 シミュレーションによる確率の計算  7.8 モンテカルロ法  7.9 擬似乱数とその要件  7.10 【発展】擬似乱数を使ったプログラムの正しさ  練習問題 第8章 大規模データの検索  8.1 線形探索と二分探索  8.2 ヒストグラムの計算  8.3 併合整列法  8.4 【発展】整列のアルゴリズムと空間計算量  8.5 さまざまなデータ構造  8.6 文章の分析を少しだけ  練習問題 第9章 データからの情報抽出:回帰分析  9.1 回帰分析とは  9.2 最小2乗線形回帰分析の原理  9.3 連立1次方程式の求解アルゴリズム  9.4 連立1次方程式求解アルゴリズムの正しさ  9.5 数値誤差とその理由  9.6 ピボット選択による改善  練習問題 第10章 拡散のシミュレーション  10.1 拡散方程式  10.2 拡散方程式の差分化  10.3 拡散シミュレーションのプログラム  10.4 拡散シミュレーションの安定性  10.5 さまざまな差分化手法とその精度  10.6 誤差を伴うプログラムのテスト  練習問題 第11章 高度な検索:ゲノムを解析する  11.1 特定の塩基を豊富に含む部位の検索  11.2 検索の高速化  11.3 動的計画法とメモ化  11.4 2種類のゲノムの共通部分を探す  練習問題 第12章 データを分類する  12.1 クラスタリング  12.2 クラスタリングの単純なアルゴリズム  12.3 k-means法  12.4 k-means法の初期値依存性  12.5 コンピュータの限界 付録A Python言語の簡易ガイド  A.1 言語の基本的な構造  A.2 名前  A.3 文  A.4 式  A.5 基本的な値と型  A.6 ライブラリ  A.7 エラーと例外 付録B itaライブラリガイド  B.1 練習問題の解答確認プログラムexcheck  B.2 itaライブラリ関数の詳細  B.3 itaライブラリの実現 Introduction to Programming and Algorithms Using Python Akimasa MORIHATA

みんなのレビュー
まだレビューはありません
No.55
58

作曲少女~平凡な私が14日間で曲を作れるようになった話~

仰木 日向
ヤマハミュージックエンタテイメントホールディングス
みんなのレビュー
まだレビューはありません
No.56
58
みんなのレビュー
まだレビューはありません
No.57
58

作曲はじめます! ~マンガで身に付く曲づくりの基本

monaca:factory
ヤマハミュージックエンタテイメントホールディングス
みんなのレビュー
まだレビューはありません
No.59
58

作りながら覚える 3日で作曲入門

monaca:factory
ヤマハミュージックエンタテイメントホールディングス
みんなのレビュー
まだレビューはありません
No.60
58
みんなのレビュー
まだレビューはありません
No.61
58

自然言語処理編

みんなのレビュー
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
search