【2024年】「機械学習」のおすすめ 本 122選!人気ランキング

この記事では、「機械学習」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
  2. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  3. 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
  4. 独習Python
  5. ゼロから作るDeep Learning ❷ ―自然言語処理編
  6. Python 1年生 体験してわかる!会話でまなべる!プログラミングのしくみ
  7. [第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)
  8. パターン認識と機械学習 上
  9. Kaggleで勝つデータ分析の技術
  10. Pythonスタートブック [増補改訂版]
他112件
No.2
95
みんなのレビュー
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
No.5
85

自然言語処理編

みんなのレビュー
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
No.8
78
みんなのレビュー
ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。
No.9
77
みんなのレビュー
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
No.10
77
みんなのレビュー
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
No.12
75

ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン

みんなのレビュー
まだレビューはありません
No.16
70
みんなのレビュー
まだレビューはありません
No.17
70
みんなのレビュー
まだレビューはありません
No.18
70
みんなのレビュー
まだレビューはありません
No.20
69

ディープラーニング活用なくしてビジネスの飛躍的成長なし

みんなのレビュー
まだレビューはありません
No.21
69
みんなのレビュー
まだレビューはありません
No.25
68
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.27
68
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.29
67

フレームワーク編

みんなのレビュー
まだレビューはありません
No.32
67
みんなのレビュー
ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!
No.33
67

文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答

みんなのレビュー
まだレビューはありません
No.34
67
みんなのレビュー
まだレビューはありません
No.36
67
みんなのレビュー
まだレビューはありません
No.39
66
みんなのレビュー
Pythonを学ぶ初学者が一番最初に手に取る本として最適。ただ書籍だと限界があるのでYoutube動画などで合わせて学ぶのがおすすめ。
No.46
62

よくわかるPython入門

富士通ラーニングメディア
富士通ラーニングメディア
みんなのレビュー
まだレビューはありません
No.49
61

Python(パイソン)は初心者が比較的修得しやすく、AI(人工知能)やパターン認識などの先端技術に活用されている優れたプログラミング言語です。 本書では、初心者を対象に、Pythonを使ったプログラミングの勘所をやさしく解説しました。 例題に取り組むことで、プログラミングとはどういうものかを理解し、プログラミング的思考を身につけてもらうことを目的に執筆しました。 読者の皆さんが、楽しみながらPythonの素晴らしさやプログラミングの醍醐味を感じていただけたら、著者として望外の喜びです。

みんなのレビュー
まだレビューはありません
No.50
61
みんなのレビュー
まだレビューはありません
No.51
61
みんなのレビュー
まだレビューはありません
No.52
61
みんなのレビュー
まだレビューはありません
No.54
60
みんなのレビュー
まだレビューはありません
No.60
59
みんなのレビュー
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
No.62
59
みんなのレビュー
まだレビューはありません
No.63
59
みんなのレビュー
内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊
No.65
59

PyTorchではじめるAI開発

坂本 俊之
シーアンドアール研究所
みんなのレビュー
まだレビューはありません
No.66
59

Python[完全]入門

松浦健一郎
SBクリエイティブ
みんなのレビュー
まだレビューはありません
No.67
59
みんなのレビュー
まだレビューはありません
No.68
59
みんなのレビュー
まだレビューはありません
No.69
59
みんなのレビュー
まだレビューはありません
No.70
59
みんなのレビュー
超人気のUdemy講師酒井さんの書籍。この書籍さえ一通り読んでおけばPythonは問題ないといっても過言ではないくらい網羅性があって分かりやすい。
No.71
59

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.72
59
みんなのレビュー
まだレビューはありません
No.73
59
みんなのレビュー
まだレビューはありません
No.76
59
みんなのレビュー
AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。
No.81
59
みんなのレビュー
ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。
No.86
61
みんなのレビュー
まだレビューはありません
No.87
59
みんなのレビュー
Rを使って統計学の基本を分かりやすく手を動かしながら学べる書籍。Rを学ぶならまずこの本からはじめるのがオススメ!
No.88
59
みんなのレビュー
まだレビューはありません
No.90
59
みんなのレビュー
まだレビューはありません
No.91
61
みんなのレビュー
まだレビューはありません
No.93
59
みんなのレビュー
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
No.94
61
みんなのレビュー
まだレビューはありません
No.96
61
みんなのレビュー
まだレビューはありません
No.97
59
みんなのレビュー
まだレビューはありません
No.100
59
みんなのレビュー
まだレビューはありません
No.102
59

人工知能 人工知能と世界の見方 人工知能と社会

みんなのレビュー
まだレビューはありません
No.103
61

「なぜディープラーニングが形を区別できるのか」が見えてくる!Excelと対話しながらしくみを解き明かす画期的な超入門書!初めてのAI学習に最適!難しい数学計算はExcelに任せてディープラーニングのしくみを動かしながら理解できる! 1章 初めてのディープラーニング(畳み込みニューラルネットワークのしくみは簡単 AIとディープラーニング) 2章 Excelの確認とその応用(利用するExcel関数はたったの7個 Excelの参照形式 ほか) 3章 ニューロンモデル(神経細胞の働き 神経細胞の働きを数式表現 ほか) 4章 ニューラルネットワークのしくみ(読み物としてのニューラルネットワークのしくみ ニューラルネットワークが手書き文字を識別 ほか) 5章 畳み込みニューラルネットワークのしくみ(読み物としての畳み込み-ニューラルネットワークのしくみ 畳み込みニューラルネットワークが手書き数字を識別 ほか) 付録

みんなのレビュー
まだレビューはありません
No.104
59
みんなのレビュー
まだレビューはありません
No.107
61

ディープラーニングの動作する数学の仕組みを解説。どの分野が必要かを知り、基本を理解し、どのように効いているかを学びます。 本書は、ディープラーニングを支え、ベースとなっている数学に焦点をあて、どのような仕組みで、どのように効いて、なぜ機能するのかの解説をしていきます。「ブラックボックス」と思われがちなディープラーニングの中身を理解していきます。 高校数学の知識を前提としながらも、必要な数学を復習しつつ、高校で習わない偏微分に関しては基本から必要な部分を解説して、ディープラーニングを支える数学の知識を学んでいきます。 「ディープラーニングという言葉は聞くが、どんなものなのか分からないので理解したい」「ブラックボックスと言われるディープラーニングの仕組みを知りたい」「ディープラーニングを学びたいけれど、数学の勉強のどこから手を付けていいか分からない」といった読者の興味に応える一冊です。 数学を学びながら、それがディープラーニングにどのように効いているのか分かることが重要です。その点を実感として理解することができれば、ディープラーニングの仕組みの本質が理解できたことにつながっていきます。そのためのディープラーニングの主要な概念の解説もしていきます。

みんなのレビュー
まだレビューはありません
No.112
59
みんなのレビュー
まだレビューはありません
No.117
59

人工知能―――機械といかに向き合うか (Harvard Business Review Press)

DIAMONDハーバード・ビジネス・レビュー編集部
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.118
58

個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ

みんなのレビュー
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
No.121
61
みんなのレビュー
まだレビューはありません
search