【2024年】「自然言語処理」のおすすめ 本 121選!人気ランキング
- ゼロから作るDeep Learning ❷ ―自然言語処理編
- 機械学習・深層学習による自然言語処理入門 ~scikit-learnとTensorFlowを使った実践プログラミング~ (Compass Data Science)
- 深層学習による自然言語処理 (機械学習プロフェッショナルシリーズ)
- 自然言語処理〔改訂版〕 (放送大学教材)
- 自然言語処理の基礎
- BERT入門ーープロ集団に学ぶ新世代の自然言語処理 (AI/Data Science実務選書)
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- BERTによる自然言語処理入門: Transformersを使った実践プログラミング
- 言語処理のための機械学習入門 (自然言語処理シリーズ 1)
- 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
自然言語処理編
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
強化学習編
本書は、言語研究者の関心に即したプログラミングの入門書です。近年、注目を集めているPythonを取り上げ、英語や日本語の言語分析のための具体的な処理例が多数収録されています。フィールドワークでも実験研究でもコーパス研究でも、電子テキストを使ったあらゆるタイプの研究者にすぐに実践できるテクニックを紹介しています。本書を通じてプログラミング処理が持つ威力を実感し、自分の研究に活用してください。
AIブームでニーズが急上昇!形態素解析の理論と実装を,技術者向けて網羅的に解説!! C++11による実装方法も掲載 あの工藤 拓が具体的に解説 !! 本書は,汎用形態素解析システムMeCabを開発した著者が、言語において意味を成す最小の要素である「形態素」の解析方法について,技術者向けにその理論や実装方法を網羅的,体系的に解説する.実装や高速化なども扱う点がユニークであるが、辞書やコーパスなどの言語資源の構築・利用といった形態素解析では外せないテーマもきちんと解説している. 本書を読めば,解析ツールを「ブラックボックス」として使っている人も中身を理解したうえで拡張・改良できる道筋ができ,ひいては独自の辞書の作成を目指せるようになる.C++11を使った具体的な実装方法も掲載.AI・自然言語処理関係の技術者,研究者には必携の書である. 汎用形態素解析システムMeCabを開発した著者が、言語において意味を成す最小の要素である形態素の解析方法について,技術者向けにその理論や実装方法を網羅的,体系的に解説.AI・自然言語処理関係の技術者,研究者必携 1.形態素解析の概要 2.言語資源 3.テキスト処理の基礎 4.辞書引きアルゴリズム 5.最小コスト法 6.点予測 7.未知語処理 8.評価 9.高度な解析