についてお探し中...

【2024年】「自然言語処理」のおすすめ 本 121選!人気ランキング

この記事では、「自然言語処理」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. ゼロから作るDeep Learning ❷ ―自然言語処理編
  2. 機械学習・深層学習による自然言語処理入門 ~scikit-learnとTensorFlowを使った実践プログラミング~ (Compass Data Science)
  3. 深層学習による自然言語処理 (機械学習プロフェッショナルシリーズ)
  4. 自然言語処理〔改訂版〕 (放送大学教材)
  5. 自然言語処理の基礎
  6. BERT入門ーープロ集団に学ぶ新世代の自然言語処理 (AI/Data Science実務選書)
  7. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  8. BERTによる自然言語処理入門: Transformersを使った実践プログラミング
  9. 言語処理のための機械学習入門 (自然言語処理シリーズ 1)
  10. 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
他111件
No.1
100

『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。

みんなのレビュー

ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる

No.2
86

本書は、自然言語処理を初歩から学べる入門書で、プログラミング経験のある開発者を対象としています。自然言語処理の基本概念や技術、タスク(自動翻訳、質問応答など)を基礎から解説し、Pythonを用いて実装を学ぶことができます。また、機械学習や深層学習の基礎もカバーしており、日本語のデータセットを使用して実践的な学習が可能です。自然言語処理をしっかり学びたい方に最適な一冊です。

みんなのレビュー
まだレビューはありません
No.3
82

本書は、自然言語処理の応用(機械翻訳、文書要約、対話、質問応答)に焦点を当て、深層学習の活用方法を実践的に解説しています。各章では、自然言語処理のアプローチ、ニューラルネットの基礎、深層学習の発展、応用技術、汎化性能向上の手法、実装方法などが詳述されています。著者は、実務経験を持つ研究者であり、実装上の工夫に関する内容も充実しています。データサイエンス分野に興味のある学生や研究者に向けた参考書です。

みんなのレビュー
まだレビューはありません
No.4
80
みんなのレビュー
まだレビューはありません
No.6
69

本書は、自然言語処理(NLP)におけるBERTモデルの理解を深めるための解説書です。Attention機構やTransformerアルゴリズムを含む技術的な基礎から、実務に役立つコードや代表的なタスクの解説まで幅広くカバーしています。著者はNLPの専門家で、技術開発やビジネス適用の経験が豊富です。内容は、NLPの基礎知識、技術解説、BERTの詳細、環境構築、実践的なタスク、練習問題、ビジネス適用の課題と解決策に分かれています。

みんなのレビュー
まだレビューはありません
No.7
68

この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。

みんなのレビュー

ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。

No.8
64

本書は、自然言語処理モデルBERTの入門書で、BERTの特徴や応用方法を解説しています。内容は、自然言語処理や機械学習の基礎から始まり、文章分類、固有表現抽出、文章校正、類似文章検索などのタスクを具体的に扱います。使用するライブラリはTransformersとPyTorch Lightningで、Python環境での実践を重視しています。読者はデータ処理からファインチューニング、性能評価までを体験し、BERTを使いこなせるようになることを目指します。

みんなのレビュー
まだレビューはありません
No.9
64

この文章は、奥村学と高村大也による書籍の目次と著者情報を紹介しています。目次には、必要な数学的知識、文書および単語の数学的表現、クラスタリング、分類、系列ラベリング、実験の仕方などが含まれています。著者は共に東京工業大学での学歴と職歴を持ち、情報工学や自然言語処理に関する専門知識を有しています。

みんなのレビュー
まだレビューはありません
No.10
62

本書は、ニューラルネットワークの理論とディープラーニングの実装を解説した入門書で、PythonやKeras、TensorFlow、PyTorchを使用しています。特に自然言語処理や時系列データ処理に焦点を当て、新しい手法やモデルを詳しく説明しています。内容は、数学の基礎から始まり、ニューラルネットワーク、ディープニューラルネットワーク、リカレントニューラルネットワーク(RNN)とその応用までを網羅しています。著者は巣籠悠輔で、実務経験を持つ専門家です。

みんなのレビュー
まだレビューはありません
No.11
60

著者松尾豊は、日本の人工知能研究の第一人者として、最新技術「ディープラーニング」の進展とその影響を探求し、知能や人間の本質について問い直します。本書では、人工知能の歴史やブームを振り返りながら、技術の進化が人類にもたらす可能性と危機について論じています。

みんなのレビュー

AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。

No.12
60
みんなのレビュー
まだレビューはありません
No.13
60
みんなのレビュー
まだレビューはありません
No.16
59
みんなのレビュー
まだレビューはありません
No.17
59

本書は、自然言語処理(NLP)におけるTransformerの基礎を解説し、BERTやGPT2などのAI技術の実装を通じて理解を深める内容です。具体的には、Transformerの概念、Self-Attention、実装方法、BERTによるテキスト分類や文章抽出、GPT2を用いた抽象的な文章要約について詳述されています。著者は機械学習エンジニアの坂本俊之氏です。

みんなのレビュー
まだレビューはありません
No.21
58

本書は、ディープラーニングを一から学びたい人向けに、数学的表現を避けて実践的なコードを用いて基本概念を解説します。著者はKerasの開発者で、TensorFlowをバックエンドに使用。内容は、ディープラーニングの基礎から始まり、コンピュータビジョンや自然言語処理の応用例まで幅広くカバー。最終的には、ディープラーニングの適用可能性や限界を理解できるようになります。

みんなのレビュー
まだレビューはありません
No.22
58
みんなのレビュー

AIが進化した未来に何が起こるのか学べる。

No.23
58
みんなのレビュー
まだレビューはありません
No.26
58

この書籍は、AIが人類にもたらす影響について探求し、脅威と福音の両面を考察しています。著者は、AIの自律的な動きや自動化の進展を解説し、AI教育の重要性や未来の共存の可能性についても論じています。内容は、自律世界の到来やAIの役割、そして人間との関係性に焦点を当てています。著者は、技術とビジネスの専門家であり、AIの進化がもたらす社会の変革に関する洞察を提供しています。

みんなのレビュー
まだレビューはありません
No.27
56

本書は、政治や企業の発言が金融市場に与える影響を受けて、テキストデータを分析し資産運用や市場分析に活用するための金融テキストマイニングについて解説しています。内容は、テキストの前処理、時系列データの処理、評価指標、因果関係の抽出、パターン認識手法など多岐にわたり、自然言語処理や機械学習を駆使した実践的なアプローチを紹介しています。著者は東京大学の専門家たちで構成されています。

みんなのレビュー
まだレビューはありません
No.28
56
みんなのレビュー
まだレビューはありません
No.29
56
みんなのレビュー
まだレビューはありません
No.31
56

本書は、ディープラーニングの実用化に向けた最新の動向と事例を紹介するもので、国内35社の具体例を通じてその活用方法や課題を解説しています。東京大学の松尾豊氏による技術的発展のロードマップを基に、業務効率化や新規事業創出に役立つ情報を提供。各章では、単純作業の自動化から異常検知、ロボットや自動運転技術、さらには創作業務への応用まで幅広くカバーしています。また、ビジネス活用に関するQ&Aも含まれ、企業の導入に役立つ内容となっています。

みんなのレビュー
まだレビューはありません
No.33
55

本書は、日本ディープラーニング協会が監修し、ディープラーニングをビジネスに活用するための実践的な知識と事例を紹介しています。特に「ディープラーニングビジネス活用アワード」の受賞プロジェクト6件を詳細にケーススタディとして取り上げています。事例には、キユーピーのAI食品原料検査装置や楽天の自動翻訳プロジェクトなどが含まれ、効果を4つのカテゴリ(商品開発、消費者対応、働き方改革、社会課題解決)に分けて説明しています。また、松尾豊理事長による「ディープラーニング技術年表」も収録されており、技術的なアドバイスが提供されています。

みんなのレビュー
まだレビューはありません
No.34
55

PyTorchではじめるAI開発

坂本 俊之
シーアンドアール研究所
みんなのレビュー
まだレビューはありません
No.35
55

本書は、金融、流通、製造、インフラなど8業界36業種におけるAI導入事例を解説し、活用分野や親和性について鳥瞰図で示しています。豊富な実例を通じてビジネスアイデアの創出を促し、実装やトライアルのノウハウも提供。各業種ごとに具体的な解説があり、AIの実用性や将来可能性を探る手助けとなります。購入者特典として鳥瞰図のダウンロードも可能です。著者はAIとデータ分析の専門家で、実績豊富です。

みんなのレビュー
まだレビューはありません
No.39
55

本書は、人工知能(AI)を学びたい初心者向けの入門書であり、特にエンジニアでない中高生や文系の大学生、ビジネスパーソンに向けて分かりやすくAIの基礎知識とビジネス活用法を解説しています。著者は人気講師で、初心者にも理解しやすい内容に配慮しています。書籍は3部構成で、基礎編ではAIの基本を、ビジネス編では業界別の活用事例と注意点、技術編ではAIの仕組みと最新技術を紹介しています。これにより、AIの本質や活用方法についての理解を深めることができます。

みんなのレビュー
まだレビューはありません
No.40
55
みんなのレビュー
まだレビューはありません
No.41
55
みんなのレビュー
まだレビューはありません
No.43
55

このビジネス書は、機械学習やディープラーニングの基本概念からビジネスチャンスまでを図解でわかりやすく解説し、法律的なリスクについても弁護士が詳しく説明しています。内容は、人工知能と共創するビジネスの未来、自動運転技術、ドローンビジネス、画像認識、マッチングビジネス、フィンテックなど幅広いテーマをカバーしています。著者は法律とビジネスの専門家で、企業の戦略立案やM&Aに関する豊富な経験を持っています。

みんなのレビュー
まだレビューはありません
No.44
54
みんなのレビュー

AIビジネスの現状が様々な具体例をもとに学べる書籍。シリコンバレーでAIスタートアップを立ち上げて戦っているこんな日本人女性がいるのだなーと感銘を受けた。

No.45
54
みんなのレビュー
まだレビューはありません
No.47
54

本書は、深層学習を基盤とした自然言語処理の基礎を体系的に学べる教科書です。自然言語処理の技術概要、機械学習の基本、Transformerや事前学習モデルの詳細、系列ラベリング、構文解析、意味解析など、幅広いトピックをカバーしています。大学生や若手技術者におすすめで、具体的な章構成も示されています。著者は各分野の専門家で、AI革命を牽引する言語処理を理解するための必読書とされています。

みんなのレビュー
まだレビューはありません
No.48
54

データを利益に変える知恵とデザイン

みんなのレビュー
まだレビューはありません
No.49
54

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.53
54
みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

No.55
54

この書籍は、AIを活用した様々な応用例を紹介しており、機械学習やディープラーニングの基礎、画像・動画処理、自然言語処理、業務効率化の方法などを学ぶことができます。また、マスク着用の判定など新しい生活様式に対応したサンプルも収録されています。著者はプログラミングや機械学習に関する多くの書籍を執筆しているクジラ飛行机氏をはじめ、専門家たちです。

みんなのレビュー
まだレビューはありません
No.56
54

この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。

みんなのレビュー

線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。

No.58
54

本書は、AI社会における職業の不安を解消し、文系の人がAIを活用してキャリアアップするための実践トレーニング本です。専門用語を最小限に抑え、多様な業種別事例を通じてAIとの共働きスキルを身につける方法を紹介しています。内容は、AI社会での職の保持、文系向けのAIキャリア、AIの基本理解、企画力の向上、業種別事例の紹介などを含んでおり、特に文系のAI人材が社会に与える影響に焦点を当てています。著者はAIビジネスの推進に取り組む専門家です。

みんなのレビュー

ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。

No.59
54

この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。

みんなのレビュー

「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。

No.60
54

この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。

みんなのレビュー
まだレビューはありません
No.61
54

本書は、ビジネス書グランプリや大賞を受賞した著者による現代の変化を分析し、AIとデータの発展がもたらす影響について論じています。読者は、社会の変化、企業の戦略、教育のあり方など多岐にわたる問いに対する答えを見つけることができます。著者は、建設的な未来の創造を目指し、ファクトベースでの現状分析を行い、ビジネス、教育、政策などの領域における具体的なアプローチを提案しています。

みんなのレビュー

ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。

No.62
54

本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。

みんなのレビュー

Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。

Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。

No.64
54

この書籍は、人工知能(AI)と人間の共存について考察し、知性の認識や人間の生き方を探る内容です。三部構成で、第一部ではAIの歴史やディープラーニングの進展を解説。第二部ではAIが世界の見方に与える影響を論じ、第三部ではAIと人間社会の関係や自由主義の課題について考察します。著者はそれぞれ異なる専門分野から、AIの進展がもたらす新しい時代の教養について議論します。

みんなのレビュー
まだレビューはありません
No.66
54

本書は、理解しやすいコードを書くための方法を紹介しています。具体的には、名前の付け方やコメントの書き方、制御フローや論理式の単純化、コードの再構成、テストの書き方などについて、楽しいイラストを交えて説明しています。著者はボズウェルとフォシェで、須藤功平氏による日本語版解説も収録されています。

みんなのレビュー
まだレビューはありません
No.67
54

この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。

みんなのレビュー

デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!

No.68
54

本書は人気シリーズの第4弾で、強化学習をテーマにしています。外部ライブラリに頼らず、基本的な技術やアイデアをゼロから実装しながら学ぶスタイルを採用しています。理論と実践の両面から、強化学習の構成要素を丁寧に解説し、数式だけでなくコードを通じて理解を深めることができます。目次にはバンディット問題やマルコフ決定過程、ベルマン方程式などが含まれています。著者は人工知能の研究開発に従事する斎藤康毅氏です。

みんなのレビュー

強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。

No.70
54
みんなのレビュー
まだレビューはありません
No.71
54
みんなのレビュー
まだレビューはありません
No.72
54

この書籍は、人工知能プログラミングに必要な数学を基礎から優しく学べる参考書です。著者は「10秒で始める人工知能プログラミング学習サービス」の代表者で、数学に苦手意識がある人でも理解できる内容になっています。基本的な数学から微分、線形代数、確率・統計を学び、実践編では住宅価格の推定や自然言語処理、手書き数字認識などの具体的な例を通じて理解を深めます。対象読者は、AIアルゴリズムを学びたいが数学に不安がある人々です。

みんなのレビュー
まだレビューはありません
No.74
54

本書は、ディープラーニングの理解に必要な数学を高校1年生レベルからやさしく解説し、最短コースで学べる内容です。微分、ベクトル、行列、確率などの必要最低限の数学を特製のマップで整理し、実際に動かせるコードをJupyter Notebook形式で提供します。内容は機械学習入門から始まり、理論編、実践編、発展編に分かれており、ディープラーニングの動作原理を深く理解できることを目指しています。

みんなのレビュー
まだレビューはありません
No.75
54
みんなのレビュー

ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。

No.76
54
みんなのレビュー
まだレビューはありません
No.78
54

本書は、Pythonを用いて強化学習と転移学習の基礎から応用までを学べる内容です。強化学習の理論やシミュレーションを丁寧に解説し、簡単なプログラミング経験があれば理解できるようになっています。また、転移学習を組み合わせた転移強化学習についても詳しく説明し、学習の効率化や実装上の注意点も網羅しています。著者は東京工芸大学の准教授で、関連ソースコードは出版社のウェブサイトで公開されています。

みんなのレビュー
まだレビューはありません
No.79
54

本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。

みんなのレビュー
まだレビューはありません
No.80
54
みんなのレビュー
まだレビューはありません
No.81
54
みんなのレビュー

初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。

No.83
54

『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。

みんなのレビュー

Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。

No.85
54
みんなのレビュー
まだレビューはありません
No.86
58

本書は、言語研究者の関心に即したプログラミングの入門書です。近年、注目を集めているPythonを取り上げ、英語や日本語の言語分析のための具体的な処理例が多数収録されています。フィールドワークでも実験研究でもコーパス研究でも、電子テキストを使ったあらゆるタイプの研究者にすぐに実践できるテクニックを紹介しています。本書を通じてプログラミング処理が持つ威力を実感し、自分の研究に活用してください。

みんなのレビュー
まだレビューはありません
No.88
54

本書は、プログラミング言語Python 3.6の入門書で、538本のサンプルコードと154本のPythonファイルを通じて基礎から機械学習まで学べる内容です。3つのパートに分かれており、Part 1ではPythonの環境設定、Part 2では基本的な構文やデータ構造、Part 3では科学計算や機械学習の応用を解説しています。初心者から実践者まで、確実なスキルアップを目指すことができます。著者はコンピュータ専門誌への寄稿や教材開発を行っている大重美幸氏です。

みんなのレビュー
まだレビューはありません
No.91
58

AIブームでニーズが急上昇!形態素解析の理論と実装を,技術者向けて網羅的に解説!! C++11による実装方法も掲載 あの工藤 拓が具体的に解説 !! 本書は,汎用形態素解析システムMeCabを開発した著者が、言語において意味を成す最小の要素である「形態素」の解析方法について,技術者向けにその理論や実装方法を網羅的,体系的に解説する.実装や高速化なども扱う点がユニークであるが、辞書やコーパスなどの言語資源の構築・利用といった形態素解析では外せないテーマもきちんと解説している. 本書を読めば,解析ツールを「ブラックボックス」として使っている人も中身を理解したうえで拡張・改良できる道筋ができ,ひいては独自の辞書の作成を目指せるようになる.C++11を使った具体的な実装方法も掲載.AI・自然言語処理関係の技術者,研究者には必携の書である. 汎用形態素解析システムMeCabを開発した著者が、言語において意味を成す最小の要素である形態素の解析方法について,技術者向けにその理論や実装方法を網羅的,体系的に解説.AI・自然言語処理関係の技術者,研究者必携 1.形態素解析の概要 2.言語資源 3.テキスト処理の基礎 4.辞書引きアルゴリズム 5.最小コスト法 6.点予測 7.未知語処理 8.評価 9.高度な解析

みんなのレビュー
まだレビューはありません
No.92
54
みんなのレビュー
まだレビューはありません
No.94
54

FINAL FANTASY XV の人工知能 - ゲームAIから見える未来

株式会社スクウェア・エニックス『FFXV』AIチーム
ボーンデジタル

『ファイナルファンタジー15』における人工知能(AI)技術とその応用について解説した書籍です。基礎編ではゲームAIの基礎知識やシステムについて、コンテンツ編では仲間やモンスターなどのAIについて、未来編では会話AIや今後の技術について触れています。また、プログラマー、デザイナー、制作チームリーダーとの対談も収録されており、ゲームAIの進化やキャラクターデザインの重要性について議論されています。

みんなのレビュー
まだレビューはありません
No.95
54

本書は、戦略ゲームAIの仕組みや意思決定プロセスを解説したバイブルで、ゲーム開発者やAIエンジニアに向けて書かれています。ストラテジー&シミュレーションゲームの技術を国内外の事例を交えて詳しく説明し、基本概念からアルゴリズムまでをビジュアルを用いて解説しています。著者はゲームAIの専門家で、教育機関での経験も豊富です。読者は戦略ゲームAIの理解を深めることができます。

みんなのレビュー
まだレビューはありません
No.99
54

本書は、日常生活で広く使われる人工知能(AI)に焦点を当て、特に機械学習と深層学習の基礎を解説した入門書です。数式を使わずに図や写真を多用して、必要な概念や用語を網羅的に説明します。内容は、Pythonや主要なツール・ライブラリ(TensorFlow、PyTorchなど)の基本、実践的なレシピ、Pythonによるウェブサーバの構築に関する章で構成されています。

みんなのレビュー
まだレビューはありません
No.102
54

本書は、数学が苦手な社会人や学生向けに、ディープラーニングの基本をExcelを使って学ぶ超入門書です。難しい数学を排除し、図示しやすいパターン認識を題材にすることで、簡単な操作と初歩的な数学知識だけでディープラーニングの動作原理を理解できる内容になっています。著者は涌井良幸と涌井貞美で、教育やライティングの経験を持つ専門家です。

みんなのレビュー
まだレビューはありません
No.103
58
みんなのレビュー
まだレビューはありません
No.104
54
みんなのレビュー
まだレビューはありません
No.106
54

本書は、ディープラーニングを支える数学に焦点を当て、その仕組みや機能を解説します。高校数学の知識を前提に、必要な数学を復習しつつ、偏微分などの基本も説明。ディープラーニングの理解を深めたい読者に向けて、数学がどのように役立つかを実感できる内容となっています。また、主要な概念や技術についても詳しく解説しています。

みんなのレビュー
まだレビューはありません
No.107
58
みんなのレビュー

データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!

No.113
58
みんなのレビュー

ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!

No.114
54

岩波データサイエンス Vol.2

岩波データサイエンス刊行委員会
岩波書店

<特集>統計的自然言語処理-ことばを扱う機械

みんなのレビュー
まだレビューはありません
No.115
54

この書籍は、深層学習に関するベストセラーの第2版で、リカレントニューラルネットワーク、GAN、深層強化学習の新章が追加され、最新のツール情報も反映されています。全体で50ページ以上増量され、物体検出やセグメンテーションの活用も強化されています。著者は山下隆義氏で、深層学習のセミナー講師としても活動しています。

みんなのレビュー
まだレビューはありません
No.116
58
みんなのレビュー

データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!

No.119
54

本書は、GAN(敵対的生成ネットワーク)の基礎から実装までを解説する入門書です。著者は、実物に近い画像生成を可能にするこの技術を、Jupyter Notebooksを用いてPythonやKerasで実装しながら学べるようにしています。対象読者は、機械学習やニューラルネットワーク、Pythonに一定の経験を持つ人々で、数学的な理論は最小限に抑えられています。全体を通じて、GANの可能性を理解し、新しい応用を見出す力を養うことを目的としています。内容は、入門、発展的な話題、実用化に分かれており、具体的な応用や将来の展望も触れています。

みんなのレビュー
まだレビューはありません
No.120
54
みんなのレビュー
まだレビューはありません
No.121
58
みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

search