【2023最新】「統計学」のおすすめ本100選!人気ランキング
- 統計学入門 (基礎統計学Ⅰ)
- マンガでわかる統計学 素朴な疑問からゆる~く解説 (サイエンス・アイ新書)
- マンガでわかる統計学
- 日本統計学会公式認定 統計検定 2級 公式問題集[2018〜2021年]
- 改訂版 日本統計学会公式認定 統計検定3級対応 データの分析
- はじめての統計学
- 完全独習 統計学入門
- 数理統計学 (数学シリーズ)
- 統計学が最強の学問である[実践編]――データ分析のための思想と方法
- 入門 統計解析法
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
こんな本がほしかった!大学生にも社会人にも必ず役立つ画期的な入門書!高校数学までの復習で数学と統計学の「繋がり」がわかる。「違い」もわかる。 第1章 データを整理するための基礎知識(平均 割り算の2つの意味 ほか) 第2章 データを分析するための基礎知識(平方根 平方根の計算 ほか) 第3章 相関関係を調べるための数学(関数 1次関数 ほか) 第4章 バラバラのデータを分析するための数学(階乗 順列 ほか) 第5章 連続するデータを分析するための数学(「無限」の理解 極限 ほか)
Pythonで書かれたサンプルコードを使って実際に手を動かしながら統計が学べる、プログラマのための統計入門の決定版。 Pythonコードを使って解説する統計入門書、待望の改訂版! 「プログラミングのスキルを統計の理解に役立てよう」というコンセプトのもと、数学的な観点から語られることが多い統計について、計算処理の観点から説明し、実際にPythonのコードを示し、実データを分析しながら統計の基礎を解説したものとして人気を博した第1版を全面的にアップデート。新しいツールやライブラリを使った統計手法を示すほか、回帰、時系列分析、生存分析について新たな章を追加しました。Pythonで書かれたサンプルコードを使って実際に手を動かしながら統計が学べる、プログラマのための統計入門の決定版。
Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Python による計算 第1章 Python の初歩 第2章 確率の計算 第II部 統計解析の基礎 第3章 機械学習の問題設定 第4章 統計的精度の評価 第5章 データの整理と特徴抽出 第6章 統計モデルによる学習 第7章 仮説検定 第III部 機械学習の方法 第8章 回帰分析の基礎 第9章 クラスタリング 第10章 サポートベクトルマシン 第11章 スパース学習 第12章 決定木とアンサンブル学習 第13章 ガウス過程モデル 第14章 密度比推定 付録A ベンチマークデータ A.1 UCI Machine Learning Repository A.2 mlbench A.3 datasets 参考文献 Python索引 用語索引
実践的にベイズ統計を学ぶために、数式は最小限とし、難しい計算には「Weka」や「Excel」といったツールを積極的に使用。 「ベイズ統計学」の敷居を低くする「理論より実践」の本!! 本書は、いわゆる「ネイマン‐ピアソン理論」の統計学とベイズ統計学の比較や、ベイズ統計理論の数式的な裏付けを示す等、学術的・専門的な解説を行うことを目的とはせず、ベイズ統計が現代社会の中でどのように生かされているのかを親しみやすい実例を挙げて記載し、実務への橋渡しを行うものです。解説する上で最小限必要とする数式は掲載しますが、ベイズ法で大きな障害となる「計算が難しい」という問題点をツール「Weka」や「Excel」を積極的に使用して簡略化し、データ分析の敷居を低くすることで、「理論より実践」を目指します。 はじめに:数理統計学とベイズ統計学の違い 第1章 宇宙から箱が届いた箱の中身を探る ―これがベイズの考え方 第2章 病気の検査 ―ベイズの定理 第3章 オオカミ少年とベイズ ―Wekaでベイズ決定 第4章 複数の因果関係を表す ―Wekaでベイジアンネットワーク 第5章 確率の確率 ―確率分布の導入 第6章 小さい村への対応 ―事前分布の上手な利用 第7章 見えない状態を推測する ―ベイズの定理と発展 付 録 ベイズ統計用ソフトウェア
サンプルコードを動かして統計の直観的な理解を促した『Think Stats-プログラマのための統計入門』の著者によるベイズ統計・ベイス推論の解説書。数学的な観点での記述は最小限にとどめ、実例を多く使って実用的観点からベイズ手法を解説。Pythonで書かれたサンプルコードを使って実際に手を動かしながらベイズ統計を学ぶことができる。 1章 ベイズの定理 2章 計算統計学 3章 推定 4章 もっと推定を 5章 オッズと加数 6章 決定分析 7章 予測 8章 観察者バイアス 9章 2次元 10章 ベイズ計算を近似する 11章 仮説検定 12章 証拠 13章 シミュレーション 14章 階層的モデル 15章 次元を扱う