についてお探し中...

【2024年】「統計学」のおすすめ 本 157選!人気ランキング

この記事では、「統計学」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. 統計学入門 (基礎統計学Ⅰ)
  2. マンガでわかる統計学 素朴な疑問からゆる~く解説 (サイエンス・アイ新書)
  3. マンガでわかる統計学
  4. データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学)
  5. 日本統計学会公式認定 統計検定 2級 公式問題集[2018〜2021年]
  6. 統計学が最強の学問である
  7. はじめての統計学
  8. 改訂版 日本統計学会公式認定 統計検定3級対応 データの分析
  9. 完全独習 ベイズ統計学入門
  10. 入門 統計学(第2版): 検定から多変量解析・実験計画法・ベイズ統計学まで
他147件
No.1
100

文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答

みんなのレビュー
まだレビューはありません
No.3
69
みんなのレビュー
まだレビューはありません
No.4
68

この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。

みんなのレビュー

線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。

No.6
66

本書では、統計学があらゆる学問の中で最強である理由を解説し、現代社会におけるその重要性や影響力を最新の事例を通じて探求しています。著者は、統計学の基本概念や手法(サンプリング、誤差、因果関係、ランダム化など)を紹介し、統計学の魅力とパワフルさを伝えます。著者は東京大学出身の専門家で、データを活用した社会イノベーションに取り組んでいます。

みんなのレビュー

学生の時にこの書籍を読んで統計学に興味を持った。統計学の魅力について分かりやすく学べる書籍。専門的な内容はそれほどないのでスラスラ読める。統計学ってどんなことができるの?なんでそんなにすごいの?ということを知りたい人がまず最初に読むべき本。

No.7
66

はじめての統計学

鳥居 泰彦
日経BPマーケティング(日本経済新聞出版

この書籍は、数学が苦手な人でも理解できるように、統計学の基礎知識を丁寧に解説した入門書です。練習問題を通じて統計学のエッセンスを身につけられるワークブックで、内容は統計学の基本概念から始まり、標本分布、確率分布、仮説検定、相関分析、回帰分析などのテーマを扱っています。学習を通じて考える力を養うことを重視しています。

みんなのレビュー
まだレビューはありません
No.9
65

本書は、ビジネスにおけるベイズ統計学の基本をわかりやすく解説した入門書です。中学数学の知識がなくても理解できるように工夫されており、特にIT業界や統計に興味があるビジネスパーソンに最適です。内容は、ベイズ推定の使い方や確率論の基礎、確率分布などを含み、実用的な視点から未来を予測するための統計学を学べます。著者は帝京大学の教授、小島寛之氏です。

みんなのレビュー
まだレビューはありません
No.10
65

この書籍は、統計学の基本を体系的に学べる内容で、初心者から統計学全般を理解したい人に適しています。公式の背後にある分析の考え方を重視し、例題や演習問題を通じて知識を深めることができます。第2版では、確率や仮説検定の内容が強化され、多変量解析やベイズ統計学の理論も追加されています。著者は千葉大学の教授で、農業経営や消費者行動分析の専門家です。

みんなのレビュー
まだレビューはありません
No.11
65

この書籍は、ベイズ統計の基本とその応用方法を、統計の基礎知識がない人にもわかりやすく解説しています。柔軟な事前確率を用いることで、あいまいな人間の経験則を取り入れ、実用的な情報を導き出すことができると説明されています。目次には、ベイズの定理や応用、MCMC法、階層ベイズ法などが含まれています。著者は涌井良幸で、数学教育と統計学の研究に取り組んでいます。

みんなのレビュー
まだレビューはありません
No.12
63

この書籍は、マーケティング調査や金融リスク、株・為替のボラティリティ、選挙の出口調査など、さまざまな分野でのデータ分析の基礎を解説しています。内容は、標準偏差や検定、区間推定などの基本的な統計手法から、観測データを用いた母集団の推定方法まで幅広くカバーしています。著者は帝京大学の助教授で、数理経済学を専門とする小島寛之氏です。

みんなのレビュー
まだレビューはありません
No.13
63

入門統計解析法

永田 靖
日科技連出版社

本書は、統計解析の基礎手法を幅広く解説した入門書であり、統計解析の全体像を把握することができます。目次には、データ整理、分布と期待値、検定・推定の考え方、分散分析、相関分析、回帰分析などが含まれています。

みんなのレビュー
まだレビューはありません
No.14
61
みんなのレビュー
まだレビューはありません
No.15
61
みんなのレビュー
まだレビューはありません
No.16
60
みんなのレビュー
まだレビューはありません
No.17
60
みんなのレビュー
まだレビューはありません
No.18
60
みんなのレビュー
まだレビューはありません
No.19
60

この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。

みんなのレビュー

デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!

No.20
60
みんなのレビュー
まだレビューはありません
No.21
60
みんなのレビュー
まだレビューはありません
No.22
60

統計ソフトが行なっている推定・検定の背景の理論を知りたい。推定・検定を仕事で使っているけれど、結論の意味していることが実は理解できていない。そんな、文系・理系出身者の方々に向け、推定・検定の背景にある原理を難しい数式や確率変数の概念を使わずに図像を用いてわかりやすく説明しています(第1章)。 第1章 (相対度数分布グラフ 平均、分散・標準偏差 サンプルXの相対度数分布グラフ 正規分布 推定の考え方 検定の考え方) 第2章 (確率変数 二項分布 推定の応用 検定の応用 χ2分布、t分布、F分布) 第3章 (2変量の統計)

みんなのレビュー
まだレビューはありません
No.23
60

この書籍は、データ分析の基礎から応用までを学べる内容で、データ可視化や統計手法、仮説検定、重回帰分析など、一生使えるスキルを身につけることができます。著者はデータサイエンティストとしての豊富な経験を持ち、実務に役立つ知識を提供しています。目次にはデータ分析の全体像や具体的な手法が紹介されています。

みんなのレビュー
まだレビューはありません
No.25
60

本書は、欠測データの解析における多重代入法の実用的な手法を解説しています。従来の書籍では理論中心でしたが、本書では具体的な応用事例や手順を示し、社会科学の分析手法(t検定、重回帰分析、ロジスティック回帰分析など)における欠測データ処理を詳述しています。Rコードと実データを用いて、読者が実際に手順を再現しながら学ぶことができるようになっています。著者は、統計科学や不完全データ処理法の専門家です。

みんなのレビュー
まだレビューはありません
No.26
59

データ分析と機械学習のための新しい教科書

みんなのレビュー
まだレビューはありません
No.28
58

本書は、AI・データ分析プロジェクトの成功には技術知識だけでなく「ビジネス力」が重要であることを強調しています。データサイエンティストのキャリアや業界の概要から始まり、プロジェクトの立ち上げ、実行、評価、収益化までのノウハウを網羅。具体的には、課題設定、案件獲得、データ分析手法の検討、レポーティングなどのプロセスを解説し、実務に役立つ情報を提供しています。著者は業界の専門家で、実践的な知識を基にした内容となっています。

みんなのレビュー
まだレビューはありません
No.29
58
みんなのレビュー
まだレビューはありません
No.31
58

入門統計解析

倉田 博史
新世社
みんなのレビュー
まだレビューはありません
No.32
58

本書は、データサイエンスの基本概念から実際のビジネス活用事例までを豊富な図やイラストを用いて解説し、初心者でも理解しやすい内容になっています。データサイエンスの重要性が増す中、数学的な専門用語を避けながら、機械学習や先端テクノロジーとの関連も紹介。ビジネスパーソンや学生にとって、データサイエンスを学ぶための入門書として最適です。

みんなのレビュー
まだレビューはありません
No.33
57
みんなのレビュー
まだレビューはありません
No.35
57

本書は、近年注目されている統計モデリングについて解説しており、特にフリーソフトのStanを用いた実践的なアプローチを提供しています。Stanは高い記述力を持ち、階層モデルや状態空間モデルを簡単に記述できるため、データ解析に非常に有効です。著者は、ベイズ統計の理解を深めるための実践的な内容を重視し、StanとRを通じて統計モデリングの考え方を学ぶことができるとしています。目次には導入編、入門編、発展編があり、幅広いテーマを扱っています。著者は統計モデリングやデータサイエンスの専門家です。

みんなのレビュー
まだレビューはありません
No.36
58

統計学のための数学教室

永野 裕之
ダイヤモンド社

こんな本がほしかった!大学生にも社会人にも必ず役立つ画期的な入門書!高校数学までの復習で数学と統計学の「繋がり」がわかる。「違い」もわかる。 第1章 データを整理するための基礎知識(平均 割り算の2つの意味 ほか) 第2章 データを分析するための基礎知識(平方根 平方根の計算 ほか) 第3章 相関関係を調べるための数学(関数 1次関数 ほか) 第4章 バラバラのデータを分析するための数学(階乗 順列 ほか) 第5章 連続するデータを分析するための数学(「無限」の理解 極限 ほか)

みんなのレビュー
まだレビューはありません
No.37
57
みんなのレビュー

ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!

No.41
57

本書は、Pythonのデータ処理ライブラリ「pandas」の実践的な使用法を約100のレシピ形式で紹介するもので、データ分析や科学計算に役立つ内容が含まれています。各レシピは手順や解説が整然とまとめられており、データ構造の基本から可視化技術まで幅広くカバーしています。著者はデータサイエンティストのTheo Petrouで、教育やデータ分析に関する豊富な経験を持っています。読者はデータサイエンスに興味のあるすべての人を対象としています。

みんなのレビュー
まだレビューはありません
No.42
57

本書は、回帰分析、重回帰分析、ロジスティック回帰分析について解説しており、基礎知識から実践的な計算方法までをカバーしています。著者は高橋信氏で、統計学を基にした情報サービス業に従事しています。

みんなのレビュー
まだレビューはありません
No.43
57

初歩から段階を踏み解説。難しい箇所には印を付し、目的に合わせた学習ができる。新たにデータ・サイエンスとの関連の章を新設。 長年好評を博してきた,信頼の厚い定番テキスト。初歩から段階を踏んで解説。やや難しい箇所には印を付し,目的に合わせた学習ができる。練習問題も充実している。近年の動向に合わせて,新たにデータ・サイエンスとの関連を説明する章を設けた最新版。 序 章 不確かさの時代に向き合う基本統計学 第1章 平均値と分散 第2章 度数分布 第3章 回帰と相関の分析 第4章 確 率 第5章 確率変数と確率分布 第6章 主な確率分布 第7章 標本分布 第8章 推 定 第9章 検 定 第10章 回帰の推測統計理論 終 章 統計学の歴史,因果関係分析,データ・サイエンス

みんなのレビュー
まだレビューはありません
No.44
57

入門 実践する統計学

藪 友良
東洋経済新報社
みんなのレビュー
まだレビューはありません
No.45
57

この書籍は、数理統計学の基礎概念と理論を数学的かつ言葉で丁寧に解説した新装改訂版です。新たに40題の練習問題が追加され、解答例はサポートサイトで提供されます。統計検定®1級試験の学習にも適しており、幅広い話題を統一的な視点で理解できる内容となっています。著者は竹村彰通で、経済学やデータサイエンスの専門家です。

みんなのレビュー
まだレビューはありません
No.47
57

本書は、多変量解析法の入門書であり、統計的方法を習得した人を対象に、簡単な例を用いて理論を2次行列で解説しています。主要な内容には、単回帰分析、重回帰分析、主成分分析、クラスター分析などが含まれています。著者は早稲田大学の教授で、統計学に関する多くの著作があります。

みんなのレビュー
まだレビューはありません
No.49
57

『Data Visualization: A Practical Introduction』の日本語訳が刊行され、全世界のRユーザーに支持されている。この本は、データ可視化の基本を初心者でも理解できるように解説しており、ggplotやtidyverseの知識がなくても実践的に学べる内容となっている。データの見せ方や可視化の手順に加え、実践的なスキルを提供。著者はデューク大学の教授であり、さまざまな専門家が推薦している。目次にはデータの整形や地図描画など、多岐にわたるテーマが含まれている。

みんなのレビュー
まだレビューはありません
No.50
57
みんなのレビュー
まだレビューはありません
No.51
57

本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。

みんなのレビュー

データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!

No.54
57

本書は、数理モデルの多様な手法を解説し、データ分析における選択と理解を促進する入門書です。機械学習や統計モデルなど、自然科学と人文社会科学の手法を網羅し、初学者がデータ分析の全体像を把握できるように設計されています。特に、モデリング手法の選択や誤解しやすい点について丁寧に説明し、大学一年生でも理解できるレベルでありながら、より進んだ読者にも楽しめる内容となっています。著者は東京大学の特任講師で、幅広い分野での数理的解析に取り組んでいます。

みんなのレビュー

データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!

No.56
56

本書は、ビジネスにおけるデータ活用の重要性を背景に、因果分析の手法である「因果推論」と「因果探索」を学ぶための実践的なガイドです。因果推論は施策の効果を推定する手法であり、因果探索はデータから因果関係を明らかにする方法です。読者はPythonや機械学習ライブラリを用いて実際にプログラムを実装しながら、これらの手法を習得できます。内容は因果推論の基本から機械学習の応用、さらに因果探索の実装まで多岐にわたります。

みんなのレビュー
まだレビューはありません
No.57
56

本書はデータ視覚化の重要性と技術を解説しており、単なるグラフ作成にとどまらず、データの意味を明確にし、オーディエンスに興味を持たせることを目的としています。筆者は日本人女性唯一のTableau ZEN MASTERであり、実践的なノウハウや事例を通じて、データ視覚化の基礎からプロフェッショナルなテクニックまでを紹介しています。主要な章では、視覚化の基本概念、プロっぽく見せるコツ、適切なチャートの選択、実際のダッシュボード作成事例、組織内でのデータ視覚化の浸透方法について詳しく説明しています。

みんなのレビュー
まだレビューはありません
No.58
57

【数研講座シリーズの特徴】多くの学生の声から生まれた,丁寧な解説でわかりやすい今までにない大学教材。既刊と同様,以下の趣旨を引き継いでいる。POINT.1高校の教科書・参考書とおなじようなレイアウトを採用している。POINT.2内容は厳密さを重視。大学の統計学の講座で学ぶ主な内容を扱っている。POINT.3独習ができるようにしっかりと丁寧に書かれているので,オンライン講義で教員が居なくても不安なく読書を進められる。【教科書の特徴】■統計学の知識を用いて行う推定→検定の流れを段階ごとに解説している。■推定→検定の段階には,観察で得たデータをもとにデータからわかることについて仮説を立てる,データを整理しデータの特徴を 把握する,立てた仮説を数式を用いてモデル化する,そのモデルの正確性を見極める,モデルから検定を行うがある。章ごとに,これらについて詳しく解説している。■推定や検定には,大学で同時に学習する微分積分学や高校数学の復習の知識が必要不可欠である。これらについても必要に応じてその場で説明を加えている。■統計学は,純粋数学の教科書の展開である定義→定理(命題)の明示→その証明という流れとはと異なる独特の展開で解説される。■独特の展開の例 a 定義を用語として明示している。 b 定理(命題)の証明は重要であるが,統計学では,現実の数値が適応される実例で雰囲気を掴むことが重要であるので,例示が多くなっている。 c 例示の展開に倣う(慣れる)ことで,一般的な展開についても同時に読み取ることが可能である。■統計学を扱う専門書うち,一つの演習問題に対して,これほど詳説されたものは多くない。※多くの類書では,「~分布の確率を求めよ」のようにパターン的な問題が多く扱われている(本書では,これらの問題も扱う)。しかし,そのパターンの前にある根本的な計算に立ち返り,詳しい計算展開を示している。■教科書の問題についてそれを扱う例題で詳解すること,教科書にない問題についても例題化し詳解することで,教科書とチャートの相互補完を行い,2冊合わせて学習することで,理解の相乗効果を得られるように配慮している。 第0章 統計学を学ぶに当たって 第1章 標本とデータ 第2章 クロスセクショナルなデータのための記述統計 第3章 確率論の概要 第4章 モデルとパラメータの推定 第5章 統計的仮説検定

みんなのレビュー
まだレビューはありません
No.59
56

ビジュアルでわかる統計学のキホン

高部 勲
エムディエヌコーポレーション
みんなのレビュー
まだレビューはありません
No.60
57

統計学

久保川 達也
東京大学出版会

初学者のための統計学のテキスト.豊富な図を用いて,統計学を学ぶ動機づけから,社会や経済への応用までを丁寧に説明.数学と統計ソフトについてもやさしく解説.著者たちの長年にわたる講義でのノウハウが詰まった,生きた学問としての「統計学」を学ぶための最適の書. はしがき 第1章 統計学とその役割  1.1 データは語る  1.2 統計の役割 第I部 基礎事項 第2章 分布の特徴を探る  2.1 分布の特徴  2.2 分布の中心  2.3 分布の散らばり  2.4 データの標準化と歪度,尖度  2.5 発展的事項  【問 題】 第3章 度数分布から不平等度を測る  3.1 度数分布とヒストグラム  3.2 ローレンツ曲線とジニ係数  3.3 ローレンツ曲線の例  3.4 発展的事項  【問 題】 第4章 変数間の関係性をみる  4.1 相関  4.2 回帰  4.3 偏相関  4.4 発展的事項  【問 題】 第II部 確 率 第5章 確率の基礎  5.1 確率と事象  5.2 条件付き確率と事象の独立性  5.3 発展的事項  【問 題】 第6章 確率分布と期待値  6.1 離散確率変数と確率関数  6.2 連続確率変数と確率密度関数  6.3 確率分布の平均と分散  6.4 確率変数の標準化と変数変換  6.5 発展的事項  【問 題】 第7章 代表的な確率分布  7.1 離散確率分布  7.2 連続分布  7.3 発展的事項  【問 題】 第8章 多変数の確率分布  8.1 同時確率分布と周辺分布  8.2 期待値,共分散,相関  8.3 2つ以上の確率変数の分布  8.4 発展的事項  【問 題】 第III部 統計的推測 第9章 ランダム標本と標本分布  9.1 標本と統計量  9.2 標本平均の性質  9.3 標本平均の分布  9.4 代表的な統計量の性質  9.5 正規母集団の代表的な標本分布  9.6 発展的事項  【問 題】 第10章 推定  10.1 点推定  10.2 最尤法とモーメント法  10.3 平均2乗誤差による評価  10.4 区間推定  10.5 発展的事項  【問 題】 第11章 仮説検定  11.1 仮説検定の考え方  11.2 正規母集団に関する検定  11.3 近似分布に基づいた検定  11.4 カイ2乗適合度検定  11.5 発展的事項  【問 題】 第12章 回帰分析  12.1 単回帰モデル  12.2 決定係数と残差分析  12.3 重回帰モデル  12.4 分散分析  12.5 ロジスティック回帰モデル  12.6 発展的事項 第IV部 社会・経済・時系列データ 第13章 経済・社会データと統計分析  13.1 有限母集団と標本調査  13.2 時系列データ  13.3 経済指数の利用 第14章 時系列の統計分析  14.1 時系列データと統計モデル  14.2 自己回帰移動平均モデル  14.3 発展的事項  【問 題】  時系列データの実習 付録1 統計計算ソフトウェア (1)R入門 (2)エクセル入門 付録2 数学の基礎知識 (1)基本事項 (2)微分積分 (3)行列と行列式 付 表 1.正規分布表(正規分布の上側確率) 2.t分布のパーセント点 3.カイ2乗分布のパーセント点 4.F分布のパーセント点 参考文献/あとがき/索引/著者紹介 STATISTICS Tatsuya KUBOKAWA and Naoto KUNITOMO

みんなのレビュー
まだレビューはありません
No.61
56

本書は、マンガを通じてベイズ統計学の基礎と実用例を解説する内容です。ベイズ統計学と数理統計学の違いや、モンテカルロ法、エントロピーについても触れています。各章では、ベイズ統計学の基本概念やベイズの定理、マルコフ連鎖モンテカルロ法の活用例が紹介されており、実践的な知識を提供します。著者はデータ分析の専門家、高橋信氏です。

みんなのレビュー
まだレビューはありません
No.62
56
みんなのレビュー
まだレビューはありません
No.63
56

本書では、一般的に信じられている通説(例:健診で健康になる、テレビが学力を下げる、偏差値の高い大学が収入を上げる)が経済学の研究によって否定される理由を解説しています。著者は「因果推論」の手法を用い、数式なしでわかりやすく説明することで、根拠のない通説にだまされない力を養うことを目指しています。各章では、様々な因果関係を証明する方法(ランダム化比較試験、自然実験、差の差分析など)を紹介しています。

みんなのレビュー
まだレビューはありません
No.64
56

本書『ビッグデータの正体』は、ビッグデータが私たちの生活や仕事、意識に与える影響を探る内容で、企業がどのように新たな価値を創造し、人々が物事の認知をどう変えるべきかを示しています。具体的には、グーグルやアマゾンのデータ活用法、電子書籍の進化、映画産業の予測能力などを例に挙げ、ビッグデータがもたらす変化を論じています。また、データの量が質を凌駕する時代や、因果関係から相関関係へのシフトについても触れています。著者はビッグデータの専門家であり、この分野の重要性を強調しています。

みんなのレビュー

ビッグデータがどのように世界を変えるのかが学べる書籍。鳥インフルエンザが流行った時に、医療機関よりも早くGoogleが検索傾向から流行地を知り対策を取れたという話からはじまる様々なビッグデータの使い方・重要性が学べる。

No.68
56

「統計検定準1級試験対応公式テキスト」は、統計学と機械学習の幅広いトピックをカバーし、実践的な例題を通じて学べる内容です。頻出項目に重点を置き、各トピックについて解説と例題が提供されています。統計的手法の辞典としても活用できる一冊です。目次には、確率、分布、統計的推定、検定法、回帰分析、多変量解析、時系列解析など、幅広いテーマが含まれています。

みんなのレビュー
まだレビューはありません
No.69
56
みんなのレビュー
まだレビューはありません
No.70
55

ヤバい経済学 [増補改訂版]

スティーヴン・D・レヴィット/スティーヴン・J・ダブナー
東洋経済新報社
みんなのレビュー
まだレビューはありません
No.71
55

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page. FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

みんなのレビュー
まだレビューはありません
No.72
55
みんなのレビュー
まだレビューはありません
No.74
55
みんなのレビュー
まだレビューはありません
No.75
54
みんなのレビュー
まだレビューはありません
No.76
54
みんなのレビュー
まだレビューはありません
No.78
54

基本統計学(第3版)

谷崎 久志
東洋経済新報社
みんなのレビュー
まだレビューはありません
No.80
54
みんなのレビュー
まだレビューはありません
No.81
54

本書は、データ分析に必要な知識を包括的に解説した教科書で、分析手法だけでなく、データの質や解釈方法にも焦点を当てています。実践的なデータの扱いや心理学的バイアス、サンプリング方法、数理モデリングのポイントなどを幅広くカバーし、数学に自信のない読者でも理解できるよう工夫されています。データサイエンティストや研究者、ビジネスマンにとって有益な内容で、興味深い事例も豊富に紹介されています。著者は東京大学の特任講師で、さまざまな分野の問題に取り組んでいます。

みんなのレビュー
まだレビューはありません
No.82
54
みんなのレビュー
まだレビューはありません
No.85
54
みんなのレビュー
まだレビューはありません
No.86
54
みんなのレビュー
まだレビューはありません
No.87
54
みんなのレビュー
まだレビューはありません
No.88
54

社会統計学ベイシック

片瀬 一男
ミネルヴァ書房
みんなのレビュー
まだレビューはありません
No.90
54
みんなのレビュー
まだレビューはありません
No.91
56
みんなのレビュー
まだレビューはありません
No.92
54
みんなのレビュー
まだレビューはありません
No.93
56

ビジネス統計学【上】

アミール・アクゼル
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.94
54
みんなのレビュー
まだレビューはありません
No.95
56

ビジネス統計学【下】

アミール・アクゼル
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.96
54
みんなのレビュー
まだレビューはありません
No.97
54
みんなのレビュー
まだレビューはありません
No.99
54
みんなのレビュー
まだレビューはありません
No.100
54

統計学辞典

竹内 啓
東洋経済新報社
みんなのレビュー
まだレビューはありません
No.101
56

実践的にベイズ統計を学ぶために、数式は最小限とし、難しい計算には「Weka」や「Excel」といったツールを積極的に使用。 「ベイズ統計学」の敷居を低くする「理論より実践」の本!!  本書は、いわゆる「ネイマン‐ピアソン理論」の統計学とベイズ統計学の比較や、ベイズ統計理論の数式的な裏付けを示す等、学術的・専門的な解説を行うことを目的とはせず、ベイズ統計が現代社会の中でどのように生かされているのかを親しみやすい実例を挙げて記載し、実務への橋渡しを行うものです。解説する上で最小限必要とする数式は掲載しますが、ベイズ法で大きな障害となる「計算が難しい」という問題点をツール「Weka」や「Excel」を積極的に使用して簡略化し、データ分析の敷居を低くすることで、「理論より実践」を目指します。 はじめに:数理統計学とベイズ統計学の違い 第1章 宇宙から箱が届いた箱の中身を探る ―これがベイズの考え方 第2章 病気の検査 ―ベイズの定理 第3章 オオカミ少年とベイズ ―Wekaでベイズ決定 第4章 複数の因果関係を表す ―Wekaでベイジアンネットワーク 第5章 確率の確率 ―確率分布の導入 第6章 小さい村への対応 ―事前分布の上手な利用 第7章 見えない状態を推測する ―ベイズの定理と発展 付 録 ベイズ統計用ソフトウェア

みんなのレビュー
まだレビューはありません
No.102
54
みんなのレビュー
まだレビューはありません
No.103
56
みんなのレビュー
まだレビューはありません
No.104
54

多くの学生の声から生まれた,丁寧な解説でわかりやすい今までにない大学教材です。慣れ親しんだ高校の青チャートと同じ例題形式で構成しています。姉妹書『数研講座シリーズ 大学教養 統計学』に掲載された練習・章末問題166問,本書『チャート式シリーズ 大学教養 統計学』にのみ掲載された34問を加え,計200問を例題形式で詳説した大学数学の青チャートです。それぞれの例題には,問題の難易度を示す☆印が付いています。問題を解くときの目安にしてください。また,チャート式シリーズの特徴である「その問題を解決するための考え方を示す指針」,および関連する参考事項や注意事項などについても適宜解説を加え,理解が深まるようにしています。解答は懇切丁寧です。姉妹書『数研講座シリーズ 大学教養 統計学』と併読することで,さらに高い学習効果が得られます。 第0章 統計学を学ぶに当たって 第1章 標本とデータ 第2章 クロスセクショナルなデータのための記述統計 第3章 確率論の概要 第4章 モデルとパラメータの推定 第5章 統計的仮説検定

みんなのレビュー
まだレビューはありません
No.109
54
みんなのレビュー

ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。

No.110
56

ビジネス統計学 原書6版

デビッド・M・リヴィーン
丸善出版
みんなのレビュー
まだレビューはありません
No.111
54
みんなのレビュー
まだレビューはありません
No.112
54

本書は確率についての基礎から応用までを扱っています。第1部では確率の定義や複数の確率変数、確率分布について説明し、第2部では推定や検定、擬似乱数の活用法を紹介しています。付録には数学の基礎事項や確率論の補足が含まれています。著者は数理工学の専門家で、機械学習や脳科学の研究に従事しています。

みんなのレビュー
まだレビューはありません
No.115
56

サンプルコードを動かして統計の直観的な理解を促した『Think Stats-プログラマのための統計入門』の著者によるベイズ統計・ベイス推論の解説書。数学的な観点での記述は最小限にとどめ、実例を多く使って実用的観点からベイズ手法を解説。Pythonで書かれたサンプルコードを使って実際に手を動かしながらベイズ統計を学ぶことができる。 1章 ベイズの定理 2章 計算統計学 3章 推定 4章 もっと推定を 5章 オッズと加数 6章 決定分析 7章 予測 8章 観察者バイアス 9章 2次元 10章 ベイズ計算を近似する 11章 仮説検定 12章 証拠 13章 シミュレーション 14章 階層的モデル 15章 次元を扱う

みんなのレビュー
まだレビューはありません
No.116
54
みんなのレビュー
まだレビューはありません
No.117
54
みんなのレビュー
まだレビューはありません
No.118
54

現代数理統計学の基礎

みんなのレビュー

統計検定1級の対策のために購入。この本の9章までを通読すれば、統計数理の過去問を解く際に必要な知識はほぼ全て網羅されます。通読の際には命題や定理の証明も全て手で追うと効果的です。計算力が養われます。証明においては一部天下り的に方針が示されている箇所やそもそも証明が省略されている定理があり、モヤモヤすることもありますが、統計検定1級という限定的な範囲では出題されない知識に由来する部分なので、試験対策と割り切れば問題ありません。本書で省略されている証明(尤度比検定統計量の分布収束など)が記載されている書籍として、平行して参照するのにおすすめなのは竹村著の"現代数理統計学"です。想定読者のレベルや難易度は共通していますが、内容の過不足を補完できる関係にあり、また、同一事項に対しても説明や解釈の切り口が違っていて知識を有機的に繋げるのに役立ちます。

No.119
54
みんなのレビュー
まだレビューはありません
No.121
56
みんなのレビュー
まだレビューはありません
No.122
54
みんなのレビュー
まだレビューはありません
No.124
56
みんなのレビュー
まだレビューはありません
No.125
54

統計編

みんなのレビュー
まだレビューはありません
No.126
54

Pythonで書かれたサンプルコードを使って実際に手を動かしながら統計が学べる、プログラマのための統計入門の決定版。 Pythonコードを使って解説する統計入門書、待望の改訂版! 「プログラミングのスキルを統計の理解に役立てよう」というコンセプトのもと、数学的な観点から語られることが多い統計について、計算処理の観点から説明し、実際にPythonのコードを示し、実データを分析しながら統計の基礎を解説したものとして人気を博した第1版を全面的にアップデート。新しいツールやライブラリを使った統計手法を示すほか、回帰、時系列分析、生存分析について新たな章を追加しました。Pythonで書かれたサンプルコードを使って実際に手を動かしながら統計が学べる、プログラマのための統計入門の決定版。

みんなのレビュー
まだレビューはありません
No.127
54

統計学入門 応用編

安川 正彬
日経BPマーケティング(日本経済新聞出版
みんなのレビュー
まだレビューはありません
No.129
54
みんなのレビュー
まだレビューはありません
No.130
54
みんなのレビュー
まだレビューはありません
No.131
54

本書は、現代社会におけるベイズ統計学の重要性を強調し、特に文科系大学での教育が不足している現状を指摘しています。ベイズ統計学は日常生活に深く根付いており、社会科学の教育においてその理解を深めることが急務とされています。内容は、ベイズの定理や確率分布、ベイズ推定などの基礎から応用までを扱っており、文科系・理科系問わず入門者を対象としています。著者は早稲田大学の教授、豊田秀樹氏です。

みんなのレビュー
まだレビューはありません
No.133
56
みんなのレビュー

大阪ガスのデータサイエンティストで日本のデータサイエンティストの第一人者と言っても過言ではない河本薫氏の著書。データサイエンスのテクニックというよりも、会社においてどうやってインパクトの出す分析ができるかがビジネス観点で述べられている。特に事業会社のデータサイエンティストは読んでおくべき書籍。

No.138
54

確率編

みんなのレビュー
まだレビューはありません
No.139
54

Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部  Python による計算  第1章 Python の初歩  第2章 確率の計算 第II部 統計解析の基礎  第3章 機械学習の問題設定  第4章 統計的精度の評価  第5章 データの整理と特徴抽出  第6章 統計モデルによる学習  第7章 仮説検定 第III部 機械学習の方法  第8章 回帰分析の基礎  第9章 クラスタリング  第10章 サポートベクトルマシン  第11章 スパース学習  第12章 決定木とアンサンブル学習  第13章 ガウス過程モデル  第14章 密度比推定 付録A ベンチマークデータ  A.1 UCI Machine Learning Repository  A.2 mlbench  A.3 datasets 参考文献 Python索引 用語索引

みんなのレビュー
まだレビューはありません
No.141
54
みんなのレビュー
まだレビューはありません
No.142
53
みんなのレビュー
まだレビューはありません
No.143
54
みんなのレビュー
まだレビューはありません
No.144
54

この書籍は、いい加減な人ほど生産性を向上させるための実用的なテクニックを紹介しています。時間、段取り、コミュニケーション、資料作成、会議、学び、思考、発想の8つのカテゴリにわたり、57の具体的な方法を提案しています。著者は羽田康祐で、広告業界とコンサルティングの経験を活かし、マーケティングやビジネス思考に関する知識を提供しています。

みんなのレビュー

No.145
56
みんなのレビュー
まだレビューはありません
No.150
54
みんなのレビュー
まだレビューはありません
No.151
54
みんなのレビュー

異常検知について学ぶならこの本!非常に分かりやすく様々なアプローチについて学べる。PythonではなくてRでの実装なので注意

No.152
54
みんなのレビュー
まだレビューはありません
No.153
54
みんなのレビュー
まだレビューはありません
No.154
54
みんなのレビュー

「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。

No.155
53

分割表・回帰分析・ロジスティック回帰

みんなのレビュー
まだレビューはありません
search