【2024年】「gan」のおすすめ 本 98選!人気ランキング

この記事では、「gan」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  2. PythonとKerasによるディープラーニング
  3. ゼロから作るDeep Learning ❷ ―自然言語処理編
  4. scikit-learn、Keras、TensorFlowによる実践機械学習 第2版
  5. 人工知能プログラミングのための数学がわかる本
  6. GANディープラーニング実装ハンドブック
  7. ディープラーニング活用の教科書
  8. [第2版]Python 機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)
  9. やさしく学ぶ 機械学習を理解するための数学のきほん ~アヤノ&ミオと一緒に学ぶ 機械学習の理論と数学、実装まで~
  10. はじめてのディープラーニング -Pythonで学ぶニューラルネットワークとバックプロパゲーション- (Machine Learning)
他88件
No.1
100
みんなのレビュー
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
No.3
90

自然言語処理編

みんなのレビュー
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
No.6
80
みんなのレビュー
まだレビューはありません
No.7
80
みんなのレビュー
まだレビューはありません
No.13
75
みんなのレビュー
まだレビューはありません
No.14
75
みんなのレビュー
AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。
No.16
75
みんなのレビュー
ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。
No.17
75
みんなのレビュー
まだレビューはありません
No.19
75
みんなのレビュー
まだレビューはありません
No.21
75
みんなのレビュー
まだレビューはありません
No.23
75
みんなのレビュー
まだレビューはありません
No.26
74
みんなのレビュー
まだレビューはありません
No.28
66

ディープラーニング活用なくしてビジネスの飛躍的成長なし

みんなのレビュー
まだレビューはありません
No.34
64

仕事ではじめる機械学習

有賀 康顕
オライリージャパン
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.35
63
みんなのレビュー
まだレビューはありません
No.36
63
みんなのレビュー
まだレビューはありません
No.38
63

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.40
63
みんなのレビュー
ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。
No.41
63
みんなのレビュー
まだレビューはありません
No.43
63
みんなのレビュー
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
No.44
63

scikit-learnとTensorFlowによる実践機械学習

Aurélien Géron
オライリージャパン
みんなのレビュー
まだレビューはありません
No.45
63

人工知能 人工知能と世界の見方 人工知能と社会

みんなのレビュー
まだレビューはありません
No.47
63

強化学習編

みんなのレビュー
まだレビューはありません
No.51
63
みんなのレビュー
まだレビューはありません
No.52
63
みんなのレビュー
まだレビューはありません
No.54
63
みんなのレビュー
まだレビューはありません
No.59
62

FINAL FANTASY XV の人工知能 - ゲームAIから見える未来

株式会社スクウェア・エニックス『FFXV』AIチーム
ボーンデジタル
みんなのレビュー
まだレビューはありません
No.61
62
みんなのレビュー
まだレビューはありません
No.66
62

実践力を身につける Pythonの教科書

クジラ飛行机
マイナビ出版
みんなのレビュー
まだレビューはありません
No.67
62
みんなのレビュー
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
No.69
62
みんなのレビュー
まだレビューはありません
No.73
62
みんなのレビュー
まだレビューはありません
No.79
62
みんなのレビュー
まだレビューはありません
No.80
62

AI白書 2019

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.81
62
みんなのレビュー
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
No.82
62

ロボット・AIと法

弥永 真生
有斐閣

ロボット・人工知能の進展がもたらしうる社会の変化に対し、法学からの知見を提示する。 ロボット・人工知能の進展がもたらす社会の変化に期待が高まる一方で,その悪影響も懸念されている。本書は,現在生起しつつある問題から近未来に起きうる問題までを視野に入れ,法学からの知見を提示するものである。 第1章 ロボット・AIと法をめぐる動き(宍戸常寿) 第2章 ロボット・AIと法政策の国際動向(工藤郁子) 第3章 ロボット・AIと自己決定する個人(大屋雄裕) 第4章 ロボット・AIは人間の尊厳を奪うか?(山本龍彦) 第5章 ロボット・AIの行政規制(横田明美) 第6章 AIと契約(木村真生子)―ロボット・AIと競争法―(市川芳治) 第7章 自動運転車と民事責任(後藤元) 第8章 ロボットによる手術と法的責任(弥永真生) 第9章 ロボット・AIと刑事責任(深町晋也) 第10章 AIと刑事司法(笹倉宏紀) 第11章 ロボット・AIと知的財産権(福井健策) 第12章 ロボット兵器と国際法(岩本誠吾)

みんなのレビュー
まだレビューはありません
No.84
62
みんなのレビュー
まだレビューはありません
No.85
62
みんなのレビュー
ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!
No.86
62
みんなのレビュー
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
No.87
62
みんなのレビュー
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.89
62
みんなのレビュー
日本のデータサイエンティスト第一人者である河本薫さんの書籍。現場にどうやってデータサイエンスを浸透していくか、組織としてどうやって価値ある分析アウトプットを出すことができるかが学べる。
No.95
62

フレームワーク編

みんなのレビュー
まだレビューはありません
No.96
62
みんなのレビュー
まだレビューはありません
No.98
62
みんなのレビュー
まだレビューはありません
search