【2024年】「python」のおすすめ 本 122選!人気ランキング
- Python 1年生 体験してわかる!会話でまなべる!プログラミングのしくみ
- スッキリわかるPython入門 (スッキリわかる入門シリーズ)
- Pythonスタートブック [増補改訂版]
- 独学プログラマー Python言語の基本から仕事のやり方まで
- 退屈なことはPythonにやらせよう 第2版 ―ノンプログラマーにもできる自動化処理プログラミング
- 独習Python
- 3ステップでしっかり学ぶ Python 入門
- たのしいプログラミング Pythonではじめよう!
- 入門 Python 3 第2版
- Python1年生 第2版 体験してわかる!会話でまなべる!プログラミングのしくみ
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
初心者がプログラミングを学びやすい構成が魅力。Pythonの基本的な文法から実際にコードを書く過程まで、わかりやすい解説でスムーズに学べます。豊富な例題や演習が用意されているため、しっかりと理解を深めながら進めることができ、実践的なスキルが身につく点がポイントです。初めてPythonに触れる人でも安心して学べます。
本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
本書は、業務効率化や生産性向上を目指すビジネスパーソンに支持されるPythonを用いた自動化の指南書の改訂版です。WordやExcel、PDF文書の処理、Webダウンロード、メールの送受信など、日常業務の煩雑な作業を自動化する方法を解説しています。改訂版ではGmailやGoogleスプレッドシートの操作、Pythonの最新モジュールへの対応が追加され、演習問題も増補されています。また、日本語版にはEXEファイル作成方法の付録も収録されています。著者はソフトウェア開発者のアル・スウェイガートと、情報工学の博士課程を修了した相川愛三です。
『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。
この書籍は、プログラミングの基本からゲーム開発までを紹介しています。第1部ではプログラムの作成方法やデータ構造について学び、第2部では「Bounce!」ゲームの制作を行い、第3部では「ミスター・スティックマン脱出ゲーム」の開発に取り組みます。著者はプログラマーやシステムアーキテクトとして活躍する専門家たちです。
本書は、プログラミング初級者向けのPython入門書で、ベストセラー『入門 Python 3』の6年ぶりの改訂版です。Pythonの基礎から応用までをわかりやすく説明し、Python 3.9に対応した新機能も追加されています。内容は基礎、実践、付録に分かれており、リファレンスとしても利用可能です。
本書は、Python初心者向けに基本的なプログラムや人工知能アプリの作成を対話形式で学べる内容です。著者は森巧尚で、イラストを交えながら基礎知識を解説し、最新の環境に対応しています。エラー対応法も掲載されており、安心して学習できるよう配慮されています。目次には、Pythonの基礎からアプリ作成、人工知能に関する章が含まれています。
この書籍は、人気のオンライン講座を基にしたPythonプログラミングの学習書で、基礎から応用までを網羅しています。著者はシリコンバレーで活躍するエンジニアで、海外でも通用するプログラミング技術を伝授。独学をサポートする無料サンプルコードやエンジニアのキャリア戦略も紹介されており、実践的な内容が充実しています。12万人以上が受講した講座を元にしたこの一冊は、海外での活躍を目指す人にとっての道しるべとなるでしょう。
本書はPythonの作者Guido氏による入門書で、Pythonの基本機能やコンセプトをわかりやすく解説しています。特徴的な機能を紹介し、Pythonのスタイルを理解できる内容となっており、モジュールやプログラムの読み書きができるようになります。最新の3.9.0版ドキュメントに基づいて改訂されており、入門者にとって必読の一冊です。
『Python実践データ分析100本ノック 第2版』は、実際のデータ分析現場で遭遇する「汚いデータ」を扱うためのノウハウを提供する実践的な問題集です。データ加工から機械学習、最適化問題まで幅広くカバーし、ビジネスで即戦力となる応用力を養成します。内容は基礎編、実践編、発展編に分かれ、各章で具体的な課題を解決する形式で学びます。著者はデータ分析や機械学習の専門家であり、最新技術を取り入れた内容になっています。
Python(パイソン)は初心者が比較的修得しやすく、AI(人工知能)やパターン認識などの先端技術に活用されている優れたプログラミング言語です。 本書では、初心者を対象に、Pythonを使ったプログラミングの勘所をやさしく解説しました。 例題に取り組むことで、プログラミングとはどういうものかを理解し、プログラミング的思考を身につけてもらうことを目的に執筆しました。 読者の皆さんが、楽しみながらPythonの素晴らしさやプログラミングの醍醐味を感じていただけたら、著者として望外の喜びです。
本書『Python2年生 スクレイピングのしくみ 第2版』は、Pythonを使ったデータ収集技術「スクレイピング」を学ぶための入門書です。ヤギ博士とフタバちゃんが、インターネットからのデータダウンロード、HTML解析、データの読み書き、API利用、データの可視化方法を解説します。第2版ではPython 3.12に対応し、各種ライブラリやオープンデータのアップデートが行われています。初心者向けに対話形式でわかりやすく説明されており、実践的なサンプルも用意されています。
本書は、Pythonを用いてExcel作業やその他のパソコン仕事を自動化する方法を紹介しています。プログラミング初心者向けに、実践的な例題を通じて自動化の知識を丁寧に解説し、難しい理論は使わずにすぐ始められる内容になっています。Excelだけでなく、メールやWebの自動化も扱い、業務効率化の手助けをします。著者は20年以上の経験を持つ技術士で、実務に役立つプログラムを提供しています。
本書は、プログラミング言語Python 3.6の入門書で、538本のサンプルコードと154本のPythonファイルを通じて基礎から機械学習まで学べる内容です。3つのパートに分かれており、Part 1ではPythonの環境設定、Part 2では基本的な構文やデータ構造、Part 3では科学計算や機械学習の応用を解説しています。初心者から実践者まで、確実なスキルアップを目指すことができます。著者はコンピュータ専門誌への寄稿や教材開発を行っている大重美幸氏です。
本書は、ゲーム開発のノウハウをゼロから学べるPythonを使ったプログラミング解説書です。ゲーム開発に特化し、プログラムの動きや面白さを理解できる内容となっています。対象はゲーム業界を目指す学生や趣味でゲームを作りたい人で、基礎知識からプログラミング初心者でも理解しやすいように工夫されています。多様なミニゲームを通じて実践的なスキルを身につけることができ、読者特典として3つのおまけゲームも提供されています。著者は大手メーカーでの経験を持つクリエイターです。
本書は、東京大学での人気講義に基づき、データサイエンティストになるための基礎知識を提供します。Pythonを用いたプログラミングやデータ操作、確率・統計、機械学習の基本を学べる内容で、実践的な演習問題も豊富に含まれています。対象読者は、理系の大学生や社会人で、データサイエンスの入門から中級レベルを目指す人です。実際のデータを使いながらスキルを身につけることができることが特徴です。
■Python初心者に学んで欲しい文法を過不足なく掲載! それぞれの項目について、練習問題を掲載しており、読むだけではなく実際にコードを書くことでより深くPythonの理解をすることができます。 ■豊富なサンプル集 機械学習、ディープラーニング、科学技術計算といった、Pythonがよく利用されている分野についての解説を掲載しています。 いろいろな分野のサンプルコードを動かすことだけでなく、機械学習などの理論の概要を知りたい方にもオススメです。 【本書の対象読者】 ・プログラミング未経験だが、Pythonを学ぶ意欲があり、より実践的な力を身に付けたいと思っている人 ・プログラミング経験者でPythonの入門書を探しているが、一方でゴールのレベルが低すぎる書籍は避けたいと思っている人 ・多くのサンプルコードに触れ、Pythonでどんなプログラムが書けるのか学んでみたいと思う人に向けた、Pythonの入門書が欲しい人 Chapter01 プログラミング言語Python 1.1 Pythonとは? 1.2 プログラミングとは? 1.3 Pythonをインストールする 1.4 Python文法まずはここから 1.5 まとめ Chapter02 Pythonの文法 変数から文字列まで 2.1 変数 2.2 数値 2.3 文字列 2.4 まとめ Chapter03 Pythonの文法 関数からリストまで 3.1 関数とは 3.2 リスト 3.3 まとめ Chapter04 Pythonの文法 制御構文 4.1 制御構文 4.2 まとめ Chapter05 Pythonの文法 関数の定義と変数のスコープ 5.1 関数の定義 5.2 変数のスコープ 5.3 まとめ Chapter06 Pythonの文法 タプルからジェネレータまで 6.1 タプル 6.2 集合 6.3 タプル 6.4 辞書 6.5 内包表記 6.6 ジェネレータ式 6.7 まとめ Chapter07 Pythonの文法 オブジェクト指向と発展的な機能 7.1 オブジェクト指向プログラミング 7.2 例外処理 7.3 発展的な機能 Chapter08 標準ライブラリを使ってみよう 4.1 モジュール 4.2 標準ライブラリ 4.3 まとめ Chapter09 色々なプログラミングをしてみよう 9.1 配布ファイルの使い方 9.2 パッケージ 9.3 機械学習 9.4 ニューラルネットワーク 9.5 ディープラーニング 9.6 NumpyとMatplotlibによる科学技術計算 9.7 SciPyとMatplotlibによる科学技術計算 9.8 Webアプリケーションの作成 9.9 まとめ
Python業界の第一線で活躍する執筆陣によるデータ分析エンジニアに求められる技術が最速で身に付く入門書 データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 はじめに 謝辞 本書の対象読者と構成について Chapter1 データ分析エンジニアの役割 1.1 データ分析の世界 1.2 機械学習の位置づけと流れ 1.3 データ分析に使う主なパッケージ Chapter2 Pythonと環境 2.1 実行環境構築 2.2 Pythonの基礎 2.3 Jupyter Notebook Chapter3 数学の基礎 3.1 数式を読むための基礎知識 3.2 線形代数 3.3 基礎解析 3.4 確率と統計 Chapter4 ライブラリによる分析の実践 4.1 NumPy 4.2 pandas 4.3 Matplotlib 4.4 scikit-learn Chapter5 応用:データ収集と加工 5.1 スクレイピング 5.2 自然言語の処理 5.3 画像データの処理 INDEX 奥付
大切なことを一つ一つ丁寧に解説。 機械学習用途に広く活用されているPython入門書が、プログラミング言語入門書のベストセラー「やさしい」シリーズで登場します。 文法の基本からデータの扱い、ライブラリの利用まで、Pythonプログラミングの基本を、豊富なサンプルで一つ一つ丁寧に解説していますので、無理なくしっかり身につけられます。 また、Pythonを使った機械学習の基礎と実際の活用例についても、わかりやすく解説しています。 「Pythonで機械学習をやってみたいけど難しいかも……」と思っている人に、手に取っていただきたい入門書です。
本書は、AI・データ分析プロジェクトの成功には技術知識だけでなく「ビジネス力」が重要であることを強調しています。データサイエンティストのキャリアや業界の概要から始まり、プロジェクトの立ち上げ、実行、評価、収益化までのノウハウを網羅。具体的には、課題設定、案件獲得、データ分析手法の検討、レポーティングなどのプロセスを解説し、実務に役立つ情報を提供しています。著者は業界の専門家で、実践的な知識を基にした内容となっています。
本書は、富士通ラーニングメディアの人気研修コース「Python入門」を基にした書籍で、Pythonを使ったデータ解析やAIに注目が集まる中、実習中心の内容で構成されています。プログラムの基本構文を手を動かして学び、よくあるエラーの対処法を詳しく解説。実習問題を通じて理解を深められるようになっています。目次には、Pythonの概要、環境構築、基本文法、外部プログラムの呼び出し、ファイルの入出力、一歩進んだプログラムの挑戦が含まれています。
本書は、データサイエンスの基本概念から実際のビジネス活用事例までを豊富な図やイラストを用いて解説し、初心者でも理解しやすい内容になっています。データサイエンスの重要性が増す中、数学的な専門用語を避けながら、機械学習や先端テクノロジーとの関連も紹介。ビジネスパーソンや学生にとって、データサイエンスを学ぶための入門書として最適です。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、プロのゲームクリエイターが初心者向けにゲーム制作とプログラミングを解説する入門書です。Pythonを使用し、プログラミングの基礎やゲーム制作の方法、必要なアルゴリズムや数学を学びながら、モグラ叩きやテニスゲームなどのサンプルゲームを作成します。ゲーム制作に興味がある初心者に最適な内容となっています。
この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
本書『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』は、機械学習の理論とPythonによる実践を解説するベストセラーの第3版です。分類、回帰、深層学習、強化学習など幅広いトピックをカバーし、最新のPythonライブラリに対応しています。特に、敵対的生成ネットワークと強化学習の新章を追加し、従来の内容を刷新しました。機械学習の理解を深めるための実用的な一冊です。
この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
本書は、Pythonのデータ処理ライブラリ「pandas」の実践的な使用法を約100のレシピ形式で紹介するもので、データ分析や科学計算に役立つ内容が含まれています。各レシピは手順や解説が整然とまとめられており、データ構造の基本から可視化技術まで幅広くカバーしています。著者はデータサイエンティストのTheo Petrouで、教育やデータ分析に関する豊富な経験を持っています。読者はデータサイエンスに興味のあるすべての人を対象としています。
この本を通読すれば、"pythonがちゃんと書ける人"になれます。機械学習エンジニアやデータサイエンティストであれば、この本の知識があればその後pythonプログラミングで困ることはなくなります。むしろ、組織のpythonコード品質を上げる側のエンジニアになれます。あえて残念な点を挙げるとすれば、デザインパターンへの言及が少ない点です。一部のデザインパターンに対してpythonicに改変する作業を通して学んでいくスタイルですが、欲を言えば全てのデザインパターンに言及があれば良かったです。かなり分厚く重量のある書籍なので、電子書籍を利用することをおすすめします。
プログラミング初心者が最初に学ぶべき定番のアルゴリズムを徹底解説し、初心者がスキルアップするための改良術を紹介する。 プログラミング初心者が最初に学ぶべき定番のアルゴリズムを徹底解説し、初心者がスキルアップするための改良術を紹介する。 プログラマが最初に学ぶべきアルゴリズムを解説。処理を効率化するテクニックが身につく! 本書は、プログラミング言語のPythonを使ったアルゴリズムの入門書です。アルゴリズムの処理の流れや論理構造を根本から理解できるように、図と文章で丁寧に解説しています。 さらに、本書では、アルゴリズムを改良するテクニックを紹介しています。 アルゴリズムを改良すると、処理を効率化できたり、別のプログラムで応用できたり、コードが読みやすくなったりします。 自分で手を動かしてプログラムを改良することで、アルゴリズムの使い方や改良方法を実践的に学べます。 本書の1章~10章では、ソートや探索など、様々な場面で使われている基本的なアルゴリズムとその改良テクニックを解説しています。 補章では、初学者でも本書の内容を理解できるように、Pythonの基本的な文法を解説しています。 いろいろなプログラムの書き方を学びたい方、プログラミングの力を伸ばしたい方におすすめです。 1章 「最大公約数を求めるアルゴリズム」を改良する 2章 「素数を判定するアルゴリズム」を改良する 3章 「線形探索」を改良する 4章 「文字列探索」を改良する 5章 「バブルソート」を改良する 6章 「バケツソート」を改良する 7章 「部分和問題」の解法を改良する 8章 「ビットカウント」を改良する 9章 「分岐処理をなくす」改良をする 10章 「複数のアルゴリズムを組み合わせる」改良をする 補章 Python基礎講座
Pythonのスタンダードな機能だけを解説し、初心者がつまづかないようにわかりやすさを追求した入門書です。 Pythonのスタンダードがわかる。 わかりやすさを追求した本格的な入門書! 本書はPythonの入門書です。Pythonはコンパイルのいらない 軽量なプログラミング言語です。その手軽さや文法の学びやすさが 人気であり、入門者がはじめてプログラミングを行なうのに最適な 言語として注目されています。 この書籍は、はじめてプログラミングを学ぶ人に向けています。 入門者がつまづく箇所を事前に募集したプログラミングがはじめての レビューアーと追求し、プログラミングの「なぜ」を解決できるよう わかりやすさを重視した解説をしています。 この書籍で、インストールから応用まで、Pythonでデータを 扱うための基礎がたのしく身につけることができます! 【本書の特長】 本書はPythonで本当に使われることに特化しており、 「せっかく覚えたのにこの機能全然使わない」ということが ありません。 入門者でもスラスラとPythonを学ぶことができます。 また、一番つまづきやすい環境構築は図を使いながら、 丁寧に解説しているので、安心してプログラミングの学習を 始めることができます。 【対応環境】 本書はWindows、MacOSの両方で解説をしています。また、Pythonの バージョンは執筆時では最新のPython 3.6.1で解説しています。 第1章 Pythonをはじめよう 1_1 Pythonの紹介 1_2 Pythonのインストール・環境設定 1_3 Pythonでプログラムを動かそう 1_4 まとめ 第2章 型とメソッド 2_1 数値 2_2 文字列 2_3 変数 2_4 数値と文字列の相互変換 第3章 条件分岐 3_1 条件分岐とは 3_2 いろんな比較 3_3 その他の構文 第4章 リスト型と繰り返し処理 4_1 リスト型とは 4_2 繰り返し処理とは 4_3 for文とif文の組み合わせ 第5章 辞書型 5_1 辞書型 5_2 辞書型をfor文で使う 第6章 関数 6_1 関数 6_2 引数 6_3 ローカル変数とスコープ 第7章 エラーと例外 7_1 エラーとは 7_2 例外処理 7_3 エラーの種類 第8章 スクリプト、モジュール、パッケージ 8_1 スクリプト 8_2 モジュール 8_3 パッケージ 第9章 Webスクレイピング 9_1 Webスクレイピング 9_2 PythonでWeb上の情報を取得してみよう 9_3 取得した情報をBeautiful Soupを使って解析してみよう 9_4 解析した情報を見やすく表示しよう 9_5 この章の振り返り 第10章 ファイル操作 10_1 データ・ファイル操作について 10_2 ファイルを操作してみよう 10_3 open関数とファイルオブジェクト 10_4 応用編:プログラムの中でファイルを扱ってみよう 10_5 応用編まとめ 付録 A_1 プログラミングをはじめるためのCLIの基礎 A_2 ドキュメントの読み方、見つけ方 A_3 プログラムでよく使うファイル形式の紹介 A_4 さらにPythonを使い込んでいくために 解答例
この書籍は、データ分析の基礎から応用までを学べる内容で、データ可視化や統計手法、仮説検定、重回帰分析など、一生使えるスキルを身につけることができます。著者はデータサイエンティストとしての豊富な経験を持ち、実務に役立つ知識を提供しています。目次にはデータ分析の全体像や具体的な手法が紹介されています。
『Data Visualization: A Practical Introduction』の日本語訳が刊行され、全世界のRユーザーに支持されている。この本は、データ可視化の基本を初心者でも理解できるように解説しており、ggplotやtidyverseの知識がなくても実践的に学べる内容となっている。データの見せ方や可視化の手順に加え、実践的なスキルを提供。著者はデューク大学の教授であり、さまざまな専門家が推薦している。目次にはデータの整形や地図描画など、多岐にわたるテーマが含まれている。
「Head First Python」は、初心者向けのビジュアル重視の入門書で、Pythonの基本を学びながら独自のWebアプリケーションを構築する方法をステップバイステップで解説しています。データベース管理や例外処理などの理解を深めることができ、手を動かしながら学べる内容になっています。著者は情報システムやコンピューティングの専門家で、教育やIT業界での経験があります。
Pythonの基礎からVS Codeなどのツール、ディープラーニングまで、チャットボット開発しながら学ぶ解説書。 Pythonの基礎から、VS Codeなどの使い方、今話題のディープラーニングまで、チャットボットの開発、Webスクレイピング、ディープラーニングを体験しながら楽しく学ぶPython解説書の決定版です。 Pythonは、AI分野で定番のプログラミング言語です。文法がシンプルなため、入門者が最初に学ぶプログラミング言語にうってつけです。AIに関わるディープラーニングやデータ分析だけでなく、Webアプリなどの大規模システム開発でも広く利用されています。本書は、Pythonの基礎から、統合開発環境「Visual Studio Code」などの使い方、今話題のディープラーニングまで、チャットボットの開発、Webスクレイピング、ディープラーニングを体験しながら楽しく学ぶPython解説書の決定版です。自然言語処理やテキストマイニング、文章生成などが身に付きます。 Chapter0 いま、なぜPythonなのか Chapter1 Pythonを使えるようにしてプログラミングを始めよう(環境構築とソースコードの入力) Chapter2 Pythonプログラムの材料(オブジェクトとデータ型) Chapter3 条件分岐と繰り返し、関数を使う Chapter4 オブジェクト、そしてAIチャットボットへ向けての第一歩 Chapter5 ピティナのGUI化と[人工感情]の移植 Chapter6 「記憶」のメカニズムを実装する(機械学習) Chapter7 マルコフ連鎖で文章を作り出す Chapter8 インターネットアクセス Chapter9 ピティナ、ディープラーニングに挑戦!
本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
本書は、プログラミング未経験者がWebアプリケーションを実際に開発し、公開するプロセスを解説しています。プログラマーを目指す人に向けて、基礎から実践までの流れを学ぶことで、開発の全体像を把握し、学習の効率を高めることができます。主なツールとしてAWS、Django、Git、Herokuを使用し、クラウド環境での開発が可能です。完成したアプリケーションは面接時の実績として活用できます。
本書は、数理モデルの多様な手法を解説し、データ分析における選択と理解を促進する入門書です。機械学習や統計モデルなど、自然科学と人文社会科学の手法を網羅し、初学者がデータ分析の全体像を把握できるように設計されています。特に、モデリング手法の選択や誤解しやすい点について丁寧に説明し、大学一年生でも理解できるレベルでありながら、より進んだ読者にも楽しめる内容となっています。著者は東京大学の特任講師で、幅広い分野での数理的解析に取り組んでいます。
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
急速に発展するAI技術の活用テクニックを学ぶ。ChatGPTや生成AIや画像生成AIなど。 急速に発展するAI技術の活用テクニックを学ぶ。ChatGPTや生成AIや画像生成AIなど。 Streamlitで手軽にAI技術を活用!あなたはAIを使えているのか?生成AI“ChatGPT”や画像生成AI“DALL・E”などの最近話題のAIを扱うスキルを体験学習!!データサイエンティスト・マーケッター 必須のスキル!!---本書は、急速に使えるようになってきたAI技術を使用するテクニックを学ぶ書籍です。ChatGPTや生成AIや画像生成AIなど。昨今は便利なオープンソースや機能が誰でも使えるように公開されています。それらを活用してAIプログラミングを学び、AIプログラミングのスキルを獲得しましょう。 ■ 0 序 章 0-1 AIを活用するとは何か 0-2 プログラミング環境を整えよう 0-3 ウォーミングアップ:streamlitを使って計算アプリをつくってみよう! streamlitを起動してみよう 簡単な掛け算アプリを作成してみよう 掛け算/足し算を選択できるようにアプリを拡張しよう コラム①:教育者という立場から見た本書の魅力 ■ 1 人やモノを検知するAIでアプリを作ってみよう 1-1 物体検知アプリを作成しよう カメラインプット機能を作成しよう 物体検知を実装しよう 人数を計測して出力しよう 動画から人数計測結果をグラフとして出力しよう 1-2 物体検知AIを紐解こう 画像データを扱ってみよう 動画データを扱ってみよう 画像の物体検知を行って物体検知AIの中身を知ろう 物体検知のパラメータを変えて出力させてみよう 写っている人の数を数えてみよう ■ 2 骨格や顔の部位を推定するAIでアプリを作ってみよう 2-1 骨格推定アプリを作成しよう カメラインプット機能を作成しよう 骨格推定機能を実装しよう 骨格推定を活用してどちらの手を挙げているか検知してみよう 顔の部位を推定するアプリを作ってみよう 顔の部位を推定して目線を判定するアプリを作ってみよう 2-2 骨格顔推定AIを紐解こう 骨格推定AIの中身を知ろう 複数のデータを骨格推定してAIの予測結果を理解しよう 顔の部位推定AIの中身を知ろう ■ 3 写真の画風を変えるAIでアプリを作ってみよう 3-1 写真の画風を変えるアプリを作成しよう 2つの画像読み込み機能を作成しよう 画風変換機能を実装しよう アニメ風画像に変換するアプリを作ってみよう アニメ風画像に変換するアプリを改良してみよう 3-2 画風変換AIを紐解こう 画風変換AIへの入力データを知ろう 画風変換AIを実行しよう アニメ風変換AIを見てみよう コラム②:対談「教育現場でどう役に立つのか?」 ■ 4 テキストを単語に分割するAIでアプリを作ってみよう 4-1 どんな単語が含まれているか可視化するアプリを作成しよう 文字を入力できるようにしよう 単語を分割してみよう 単語に関する情報を抽出してアプリを拡張しよう CSVに書かれている文章の中身を可視化するアプリに拡張しよう 4-2 形態素解析を紐解こう 形態素解析をやってみよう 係り受け/固有表現抽出をやってみよう 形態素解析をつかいこなそう ■ 5 類似文章を検索するAIでアプリを作ってみよう 5-1 類似文章を検索するアプリを作成しよう 2つの文章の類似度を測定するアプリを作成しよう 類似文章を検索するアプリに拡張しよう 5-2 言語系AIによる文章の特徴量化と類似度計算を紐解こう 単語集計で文章を特徴量化してみよう 単語分散表現による特徴量化を体験しよう コラム③:対談「子どもたちに向けて」 ■ 6 OpenAIのGPTを活用したアプリを作ってみよう 6-1 GPTを活用したアプリを作成してみよう GPTの基本知識を押さえよう OpenAIのAPIを使用する準備を整えよう プログラムを生成してくれるアプリを作成しよう 6-2 GPTの利用方法について深堀りしてみよう GPT3.5モデルの特徴を確認しよう パラメータによる違いを確認しよう 様々な利用用途を試してみる API単体で利用する場合の留意点を押さえよう ■ 7 OpenAIの画像生成AIを活用したアプリを作ってみよう 7-1 画像を生成するアプリを作成しよう OpenAIの画像生成に関する基本知識を押さえよう 画像を生成してくれるアプリを作成しよう GPTと組み合わせたアプリに拡張しよう 7-2 画像生成(DALL・E)の利用方法について深堀りしてみよう 画像生成の基本的な使い方を押さえよう 画像生成のやり方を変えてみよう 言語の入れ方や種類を工夫してみよう コラム④:対談「プログラミングを他業種の人が習得する」
本書は、ビジネスにおけるデータ活用の重要性を背景に、因果分析の手法である「因果推論」と「因果探索」を学ぶための実践的なガイドです。因果推論は施策の効果を推定する手法であり、因果探索はデータから因果関係を明らかにする方法です。読者はPythonや機械学習ライブラリを用いて実際にプログラムを実装しながら、これらの手法を習得できます。内容は因果推論の基本から機械学習の応用、さらに因果探索の実装まで多岐にわたります。
本書は、欠測データの解析における多重代入法の実用的な手法を解説しています。従来の書籍では理論中心でしたが、本書では具体的な応用事例や手順を示し、社会科学の分析手法(t検定、重回帰分析、ロジスティック回帰分析など)における欠測データ処理を詳述しています。Rコードと実データを用いて、読者が実際に手順を再現しながら学ぶことができるようになっています。著者は、統計科学や不完全データ処理法の専門家です。
本書はデータ視覚化の重要性と技術を解説しており、単なるグラフ作成にとどまらず、データの意味を明確にし、オーディエンスに興味を持たせることを目的としています。筆者は日本人女性唯一のTableau ZEN MASTERであり、実践的なノウハウや事例を通じて、データ視覚化の基礎からプロフェッショナルなテクニックまでを紹介しています。主要な章では、視覚化の基本概念、プロっぽく見せるコツ、適切なチャートの選択、実際のダッシュボード作成事例、組織内でのデータ視覚化の浸透方法について詳しく説明しています。
はじめてのプログラミング 条件で分ける方法(分岐の基礎文法) 繰り返しさせる方法(反復の基礎文法) 関数を使ってみよう! いろいろな型を学ぼう エラーと例外を使いこなす オブジェクトとクラスとは何か? 自分が書いたプログラムをテストする 明日から使えるWebプログラミング Webアプリケーションことはじめ 今後の学習に向けて
本書『Python2年生』の第2版は、データ分析を学ぶ初心者向けに、Pythonを使った分析手法を解説しています。ヤギ博士とフタバちゃんが対話形式で進め、データの前処理、可視化、分布、予測方法などをイラストを交えながら説明します。AnacondaやGoogle Colabのアップデートも含まれ、実際に手を動かしてデータ分析を体験できる内容です。著者は森巧尚で、教育者としての経験も豊富です。
Pythonの作者GUido氏自らが書き下ろしたPython入門者のための手引書。言語とシステムの基本を解説。 Python初心者必読のチュートリアルが3.5対応で登場! Pythonの作者Guido氏自らが書き下ろしたPython入門者のための手引書です。Pythonの言語とシステムの基本的な機能やコンセプトを解説します。さらにPythonの特徴的な機能を数多く取り上げて紹介することで、読者がこの言語の雰囲気とスタイルをつかめるよう配慮しています。旧版から新たに文法やライブラリが多く追加されているほか、旧版に記載されていない仮想化についても触れられています。