【2025年】「ボルツマンマシン」のおすすめ 本 130選!人気ランキング
- 機械学習入門 ボルツマン機械学習から深層学習まで
- 機械学習スタートアップシリーズ これならわかる深層学習入門
- 深層学習 (機械学習プロフェッショナルシリーズ)
- ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ)
- パターン認識と機械学習 上
- 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
- [第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践 (impress top gear)
- Pythonで動かして学ぶ!あたらしい機械学習の教科書 第3版
- 見て試してわかる機械学習アルゴリズムの仕組み機械学習図鑑
- 深層学習 改訂第2版 (機械学習プロフェッショナルシリーズ)
本書は、機械学習や深層学習の予備知識がない読者を対象に、理論を明快に解説する入門書です。内容は、機械学習と深層学習の基本、ニューラルネットの仕組み、勾配降下法、誤差逆伝播法、自己符号化器、畳み込みニューラルネット、再帰型ニューラルネット、ボルツマンマシン、深層強化学習など多岐にわたります。著者は、理論的な基礎を重視し、学びやすい形式で解説しています。
この書籍は、ガウス過程に関する日本初の入門書であり、ベイズ的回帰モデルの柔軟性を解説しています。内容は線形回帰から始まり、ガウス過程の原理や教師なし学習、実応用に関する最新の話題も取り上げています。各章では、ガウス過程の基本概念、計算法、適用例などが詳しく説明されています。著者は統計や情報科学の専門家です。
本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。
本書『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』は、機械学習の理論とPythonによる実践を解説するベストセラーの第3版です。分類、回帰、深層学習、強化学習など幅広いトピックをカバーし、最新のPythonライブラリに対応しています。特に、敵対的生成ネットワークと強化学習の新章を追加し、従来の内容を刷新しました。機械学習の理解を深めるための実用的な一冊です。
本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。
本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーやグラフニューラルネットワーク、生成モデルなどの手法を詳しく解説しています。著者は、理論的な証明がなくても納得できる説明を重視し、実用性を考慮した内容を提供。全12章で、基本構造から各種学習方法、データが少ない場合の対策まで幅広く網羅しています。著者は東北大学の教授であり、実務家との共同研究の経験も反映されています。
この入門書は、ベイズ主義機械学習の基本原理を「モデルの構築→推論の導出」という手順で分かりやすく解説しています。内容は、機械学習とベイズ学習、基本的な確率分布、ベイズ推論による学習と予測、混合モデルと近似推論、応用モデルの構築と推論の5章から構成されています。著者は須山敦志と杉山将で、機械学習を身近に理解できるよう丁寧に記述されています。
この書籍は、R言語を用いたデータ解析の入門書で、進化し続けるRの機能を活用する方法を紹介しています。初版以来、多くのRユーザーに支持されてきたロングセラーで、第2版では深層学習やネットワーク分析など新たな内容が追加されています。データマイニングの基礎から始まり、主成分分析やクラスター分析、ニューラルネットワークなど多岐にわたる分析手法を学ぶことができます。著者は金明哲で、統計科学の専門家です。
この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。
本書は「統計モデリングの世界」への入門書で、統計、確率、ベイズ推論、MCMCの基本をチュートリアル形式で学べる内容です。RやStanを用いたデータ分析の基礎から、一般化線形モデルや一般化線形混合モデル、状態空間モデルまでを体系的に解説しています。データサイエンスを学ぶ大学生やエンジニア向けの実践的なシリーズの一環として、すぐに実践できるスキルを身につけることができます。
本書は、ディープラーニングの実装手法を学ぶための教材で、PyTorchを使用して様々なタスクに取り組みます。具体的なタスクには、転移学習、物体検出、セマンティックセグメンテーション、姿勢推定、GANによる画像生成と異常検知、自然言語処理、動画分類などが含まれています。各章を通じて、実装経験を積むことで高度な技術を習得できる構成です。読者は、GPU環境がなくてもAnacondaとJupyter Notebookを用いて学習できます。著者はディープラーニングの専門家で、研究開発に従事しています。
本書は、データ分析に必要な知識を包括的に解説した教科書で、分析手法だけでなく、データの質や解釈方法にも焦点を当てています。実践的なデータの扱いや心理学的バイアス、サンプリング方法、数理モデリングのポイントなどを幅広くカバーし、数学に自信のない読者でも理解できるよう工夫されています。データサイエンティストや研究者、ビジネスマンにとって有益な内容で、興味深い事例も豊富に紹介されています。著者は東京大学の特任講師で、さまざまな分野の問題に取り組んでいます。
この文章は、永田靖著の書籍の目次と著者情報を紹介しています。書籍は3部構成で、基礎と1変数関数の微積分、線形代数、多変数関数の微積分について解説しています。著者は1957年生まれで、早稲田大学で教授を務めています。
本書は最適化手法についての入門書であり、経営学やオペレーションズリサーチだけでなく、統計的最適化や機械学習の話題も扱っています。計算機技術の進歩により、複雑な最適化問題が解決可能になった背景を踏まえ、各手法の原理や数学的背景を詳しく解説しています。内容は例題を多く用いて分かりやすく、関連する話題や注意点も随所に挿入されています。目次には数学的準備、関数の極値、最適化手法、最小二乗法、統計的最適化、線形・非線形計画法、動的計画法が含まれています。著者は岡山大学の金谷健一教授です。
内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊
本書は、機械学習の解釈性とその重要性に焦点を当て、特にブラックボックスモデルの理解を助ける手法を紹介しています。著者は、解釈性を高めるための4つの手法(PFI、PD、ICE、SHAP)を説明し、実務での適用方法や注意点を解説します。具体的には、線形回帰モデルを通じて解釈性を理解し、機械学習モデルの振る舞いを説明できるようになることを目指します。また、実データ分析を通じて手法を実装することが可能です。著者は、機械学習プロジェクトに従事する経験を持つ専門家です。
この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。
AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来
本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。
本書はデータ視覚化の重要性と技術を解説しており、単なるグラフ作成にとどまらず、データの意味を明確にし、オーディエンスに興味を持たせることを目的としています。筆者は日本人女性唯一のTableau ZEN MASTERであり、実践的なノウハウや事例を通じて、データ視覚化の基礎からプロフェッショナルなテクニックまでを紹介しています。主要な章では、視覚化の基本概念、プロっぽく見せるコツ、適切なチャートの選択、実際のダッシュボード作成事例、組織内でのデータ視覚化の浸透方法について詳しく説明しています。
本書は、教師なし学習の重要性と実践的手法を紹介する内容です。教師なし学習はラベル付けされていないデータから学習し、従来の教師あり学習に比べてコストが低く、現実世界での応用が期待されています。データの隠れたパターンを特定し、異常検出や特徴量抽出を行う方法を解説し、変分オートエンコーダ(VAE)、敵対的生成ネットワーク(GAN)、制限付きボルツマンマシン(RBM)などの生成モデルも紹介しています。著者はデータサイエンスの専門家で、実務経験を持つ人物です。
本書は、欠測データの解析における多重代入法の実用的な手法を解説しています。従来の書籍では理論中心でしたが、本書では具体的な応用事例や手順を示し、社会科学の分析手法(t検定、重回帰分析、ロジスティック回帰分析など)における欠測データ処理を詳述しています。Rコードと実データを用いて、読者が実際に手順を再現しながら学ぶことができるようになっています。著者は、統計科学や不完全データ処理法の専門家です。
本書は、エステル・デュフロ教授らによるランダム化比較試験(RCT)の理論と実践を解説したもので、エビデンスに基づく政策形成(EBPM)におけるRCTの活用方法を探ります。監訳者の小林庸平氏が難解な部分をわかりやすく補足し、RCTの重要性や実施に際しての留意点を詳述。EBPMや経済学の実証研究に興味のある読者にとって必読の一冊です。
オークション等の注目のトピックスを盛り込み,解説をさらに丁寧に初学者にわかりやすく,新たに2色刷としてさらに読みやすく一新。 基礎から新しい研究成果までをカバーし,楽しみながらゲーム理論のエッセンスとその考え方を学べるスタンダードテキストの新版。オークション等の注目トピックスを盛り込み,さらに丁寧な解説でわかりやすく,新たに2色刷としてさらに読みやすく一新。 第1章 ゲーム理論とは何だろうか? 第2章 選択と意思決定 第3章 戦略ゲーム 第4章 ナッシュ均衡点 第5章 利害の対立と協力 第6章 ダイナミックなゲーム 第7章 繰り返しゲーム 第8章 不確実な相手とのゲーム 第9章 交渉ゲーム 第10章 グループ形成と利得分配 第11章 進化ゲーム 第12章 ゲーム実験
本書は点過程の時系列解析に関する入門書で、データが特定のイベントの発生時刻の集合として扱われる点過程の理論と実データ解析を体系的に解説しています。地震や神経細胞の活動、金融取引などの現象を分析するために点過程が広く使われており、その応用範囲が拡大しています。著者は確率・統計の基礎を持つ読者を想定し、必要な理論や計算をできるだけ分かりやすく説明しています。目次にはポアソン過程やHawkes過程、統計推定法などが含まれています。著者は時系列解析や統計地震学の専門家です。
「統計検定準1級試験対応公式テキスト」は、統計学と機械学習の幅広いトピックをカバーし、実践的な例題を通じて学べる内容です。頻出項目に重点を置き、各トピックについて解説と例題が提供されています。統計的手法の辞典としても活用できる一冊です。目次には、確率、分布、統計的推定、検定法、回帰分析、多変量解析、時系列解析など、幅広いテーマが含まれています。
本書は、AIの「説明可能性」をテーマに、なぜAIに説明が必要なのかを考察し、具体的な手法やツールを解説しています。説明可能なAI(XAI)の技術や活用方法、代表的なライブラリ(LIME、SHAPなど)の使い方を紹介し、AIの公平性、説明責任、透明性に対応するための知識を提供します。内容は課題設定、基礎知識、実践指南、将来展望の4部構成で、具体的な実践手順も付録として含まれています。
本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」という視点から整理しています。新たに「ML Ops」や「機械学習モデルの検証」などの章が追加され、読者が直面する問題解決に役立つ内容となっています。著者は機械学習分野の専門家で、実践的な知識を提供しています。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、現代における必須教養「統計」をテーマにした入門書で、語り手の「僕」と三人の数学ガール(ミルカさん、テトラちゃん、ユーリ)が楽しい数学トークを展開します。内容は、グラフのトリック、平均の理解、偏差値の驚き、コイン投げの確率などを扱っており、統計の魅力を分かりやすく紹介しています。各章では具体的な例を通じて、統計の基礎を学ぶことができます。
「数学ガールの秘密ノート」シリーズの第五弾では、中高生向けに微分の基本概念を楽しい会話形式で解説しています。テーマは「変化をとらえる」で、具体例を通じて微分の魅力を探ります。目次には、位置や速度、加速度、パスカルの三角形に関する章が含まれています。
この本では、主人公と三人の少女が積分の本質やその力について探求する数学の対話を通じて、積分が微分の逆演算であることを理解する過程が描かれています。目次には、変化の観察、はさみうち法、微分積分学の基本定理、式の形の解析、円の面積の求め方などが含まれています。
本書は「行列」をテーマに、中高生向けに数学を楽しく学ぶシリーズの第10作目です。行列の知識は機械学習や画像処理など多くの分野で重要であり、高校数学の各分野とも関連しています。内容は行列の基本的な計算方法から始まり、行列が作る図形の変換や法則、内積や行列式との関係について学べます。行列の基礎を理解することで、大学での線形代数の学びにも役立つ内容となっています。
本書は、コンピュータに関わる全ての人を対象にした線形代数の参考書であり、専門的な知識を持たない読者にも理解しやすく線形代数の本質を伝えることを目的としています。内容は、ベクトルや行列から始まり、逆行列、固有値、コンピュータでの計算方法などを網羅しており、数学的な考え方を促進します。著者は東京大学出身の平岡和幸と堀玄です。
『ポアンカレ予想』は、フランスの数学者アンリ・ポアンカレが提起した位相幾何学の問題で、2000年にクレイ数学研究所が発表したミレニアム問題の一つです。21世紀初頭にロシアのグリーシャ・ペレルマンによって証明されました。本書では、ポアンカレ予想に関連する数学的テーマを解説しながら、主人公「僕」と数学ガールたちとの交流を描いています。数学愛好家に向けた内容で、各章ではさまざまな数学の概念が紹介されています。
本書は、機械学習の基本から先進的な手法までを網羅したロングセラーのPyTorch版で、理論や数式も解説しています。前半ではscikit-learnを用いた基本的な手法やデータ前処理、後半ではPyTorchを使ったディープラーニング手法(CNN、RNN、Transformerなど)を詳述。新たにTransformerアーキテクチャやグラフニューラルネットワークに関する章も追加され、実践的な知見が得られる内容となっています。著者は機械学習の専門家で、実装を通じて理解を深めることを目的としています。
本書は「集合と位相」という数学の難解な分野について、その重要性や歴史を解説します。著者は数学者たちの創意工夫を通じて、数学の発展の過程を明らかにし、読者に理解を促します。目次には、フーリエ級数や積分の再定義、実数直線と点集合の関係、ボレルの測度、ルベーグの積分などが含まれています。著者は数学基礎論を専門とする藤田博司氏です。
この書籍は、データ分析を用いてワインの価値予測や病気診断、興行収入の最大化、最適な結婚相手の選定などを可能にする「絶対計算」の新しいビジネス戦略について解説しています。著者はイェール大学の計量経済学者イアン・エアーズで、文庫版には補章が追加されています。目次は、データの重要性や専門家との関係、直感と専門性の未来についての章で構成されています。
本書では、統計学があらゆる学問の中で最強である理由を解説し、現代社会におけるその重要性や影響力を最新の事例を通じて探求しています。著者は、統計学の基本概念や手法(サンプリング、誤差、因果関係、ランダム化など)を紹介し、統計学の魅力とパワフルさを伝えます。著者は東京大学出身の専門家で、データを活用した社会イノベーションに取り組んでいます。
学生の時にこの書籍を読んで統計学に興味を持った。統計学の魅力について分かりやすく学べる書籍。専門的な内容はそれほどないのでスラスラ読める。統計学ってどんなことができるの?なんでそんなにすごいの?ということを知りたい人がまず最初に読むべき本。
本書は確率についての基礎から応用までを扱っています。第1部では確率の定義や複数の確率変数、確率分布について説明し、第2部では推定や検定、擬似乱数の活用法を紹介しています。付録には数学の基礎事項や確率論の補足が含まれています。著者は数理工学の専門家で、機械学習や脳科学の研究に従事しています。
平均値から個性へ 階層モデルで「個性」をとらえる 個人差・地域差をとりこむ統計科学 全体モデルから局所モデルへ 生きた言葉をモデル化する ポスト近代科学としての統計科学 階層ベイズ講義
この書籍は、バイオサイエンス領域における統計検定法を解説した手引書です。基本概念から正しい使い方を身近な例を通じて学べる内容で、カラー図や漫画を用いたビジュアルが特徴です。初学者から上級者まで、レベルに応じた読み方が可能です。目次には、統計学の序説、検定の原理、さまざまな群の差の検定、回帰と相関、統計の利用と解釈についての項目が含まれています。
本書は、統計学を初めて学ぶ人々のために、統計学の広大な世界を「統計曼荼羅」として視覚化し、様々な統計手法やその相互関係を分かりやすく解説しています。著者の三中信宏氏は、生物統計学の専門家であり、統計学の重要性を強調しながら、統計的思考に必要なリテラシーや実験計画法についても触れています。全体を通じて、統計学の理解を深めるためのガイドとなる一冊です。
本書は、機械学習におけるグラフの重要性を基礎から解説し、グラフニューラルネットワークの理論と応用を深く掘り下げたテキストです。内容は、グラフの定義やニューラルネットワークの基礎、グラフニューラルネットワークの定式化、様々なタスクへの応用、高速化手法、スペクトルグラフ理論、過平滑化現象の対策、表現能力など多岐にわたります。著者は佐藤竜馬氏で、研究者としての専門知識を活かし、理論に基づいた実践的な内容を提供しています。
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
自然科学・工学・医学等への応用をめざしつつ,さまざまな統計学的考え方を紹介し,その基礎をわかりやすく解説する.シリーズIと同様に,豊富に実際例を用いつつ,図表を多くとり入れて,視覚的にもわかりやすく統計学を親しみながら学べるよう編集した. 第1章 確率の基礎(矢島美寛) 第2章 線形モデルと最小二乗法(廣津千尋) 第3章 実験データの分析(藤野和建) 第4章 最尤法(廣津千尋) 第5章 適合度検定(廣津千尋) 第6章 検定と標本の大きさ(竹村彰通) 第7章 分布の仮定(竹内 啓,藤野和建) 第8章 質的データの統計的分析(縄田和満) 第9章 ベイズ決定(松原 望) 第10章 確率過程の基礎(矢島美寛) 第11章 乱数の性質(伏見正則)
この本は、ITエンジニア向けに機械学習の理論を基礎から学ぶためのものです。改訂新版として全面カラー化され、Pythonのコーディング環境もGoogle Colaboratoryに更新されています。機械学習の重要な理論がカバーされており、入門書としての定番となっています。内容はデータサイエンスの役割や機械学習アルゴリズムの分類から、最小二乗法、最尤推定法、パーセプトロン、ロジスティック回帰、k平均法、EMアルゴリズム、ベイズ推定まで多岐にわたります。著者は、中井悦司氏で、データ活用技術の普及に努めています。
現代社会においては,さまざまなデータを正しく扱うことが全てに優先する.本書は,われわれの生活や社会と直接・間接にかかわりをもつ分野で用いられている統計的方法の基礎から応用までを,具体例に即して分かりやすく解説する. 第1章 統計学とデータ(高橋伸夫) 第2章 データの分析(竹村彰通) 第3章 標本調査法(竹村彰通) 第4章 統計調査と経済統計(廣松 毅) 第5章 地域統計(中井検裕) 第6章 経済分析における回帰分析(縄田和満・松原 望) 第7章 経済時系列データの分析(国友直人) 第8章 社会調査(盛山和夫) 第9章 社会移動データの分析手法(盛山和夫) 第10章 要因探究の方法(盛山和夫) 第11章 心理測定データの解析(渡部 洋) 第12章 テスト理論(渡部 洋) 第13章 心理・教育データのための統計的方法(渡部 洋)
この書籍は、データ分析における視点を磨き、質の高い研究を行うためのガイドです。内容は、無作為性や統計的推測、研究デザイン、データ解析の基礎について解説しています。目次は基礎編とアラカルト編に分かれ、平均値や頻度、イベント発生時間の比較方法も取り上げています。著者は丹後俊郎氏で、医学統計学の専門家です。
この書籍は、多変量解析の基本的な統計手法を実践的に解説したもので、データ分析においてどの手法を選ぶべきか、どのデータを使うべきか、結果の解釈方法についての疑問を解消します。内容は多次元尺度構成法、主成分分析、因子分析、回帰分析、判別分析などをカバーし、計算過程を通じて理解を深めることを目的としています。著者は東京大学卒の小野田博一氏です。
ビジネスでの機械学習システムの設計や運用の解説書。エンド・ツー・エンドの機械学習システムを設計・構築する基本を明らかにする。 機械学習システム設計(デザイン)を業務での実践的な観点で解説!ビジネスとしての機械学習システムの設計や運用についての解説書。本書では、機械学習の最前線で活躍する著者の豊富な経験と知識に基づき、エンド・ツー・エンドの機械学習システムを設計・構築するための基本原則を明らかにします。訓練データの処理方法、特徴の使い方、モデルを再訓練する頻度、監視すべき項目……このような設計上の決定がシステム全体の目的達成にどのように寄与するのかを、実際のケーススタディを通じて理解します。機械学習プロジェクトを成功に導く上で必要な信頼性、拡張性、保守性、およびビジネス要件の変化への適応性を備えた機械学習システムを設計する包括的なアプローチを本書で学ぶことができます。
この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。
線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。
本書は、Human-in-the-Loop機械学習を活用して高品質な学習データを効率的に作成し、機械学習モデルの品質向上とコスト削減を図る方法を解説しています。特に、能動学習を用いたアノテーションプロセスの改善に重点を置き、実践的なテクニックやアノテーション管理手法を提供しています。データサイエンティストや機械学習エンジニアにとって、効果的なAIシステム開発に寄与する内容となっています。
強化学習の①理論②実装③応用が三拍子揃ってってバランスよく書かれた良書です。強化学習は理論部分の難易度が高く、最初に読む本を間違える(理論をちゃんと勉強してから実装や応用に進もうとする)と挫折してしまうリスクが高い分野ですが、本書を最初に読んでおけば間違いありません。書籍内で示されているサンプルコードも品質が高く、実務でもそのままプロダクション環境で使えるレベルです(※適用先ドメイン固有の例外処理などは追加実装する前提)。
この書籍は、時系列データの分析方法について基礎から詳しく解説しています。目次は、時系列分析の考え方、Box-Jenkins法、その他のトピック、状態空間モデル、カルマンフィルタ、ベイズ推論など多岐にわたります。著者は兵庫県出身の馬場真哉で、北海道大学水産科学院を修了しています。