についてお探し中...

【2024年】「数理統計学」のおすすめ 本 153選!人気ランキング

この記事では、「数理統計学」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. 統計学入門 (基礎統計学Ⅰ)
  2. 新装改訂版 現代数理統計学
  3. マンガでわかる統計学 素朴な疑問からゆる~く解説 (サイエンス・アイ新書)
  4. 統計学が最強の学問である[数学編]――データ分析と機械学習のための新しい教科書
  5. Rによるやさしい統計学
  6. データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学)
  7. 中学レベルからはじめる! やさしくわかる統計学のための数学
  8. 完全独習 統計学入門
  9. 日本統計学会公式認定 統計検定 2級 公式問題集[2018〜2021年]
  10. マンガでわかる統計学
他143件
No.1
100

文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答

みんなのレビュー
まだレビューはありません
No.2
80

この書籍は、数理統計学の基礎概念と理論を数学的かつ言葉で丁寧に解説した新装改訂版です。新たに40題の練習問題が追加され、解答例はサポートサイトで提供されます。統計検定®1級試験の学習にも適しており、幅広い話題を統一的な視点で理解できる内容となっています。著者は竹村彰通で、経済学やデータサイエンスの専門家です。

みんなのレビュー
まだレビューはありません
No.4
68

データ分析と機械学習のための新しい教科書

みんなのレビュー
まだレビューはありません
No.5
67

本書は、統計学の基礎から応用までを扱った内容で、基礎編ではR言語を用いた記述統計や統計的仮説検定について解説し、応用編ではベクトルや行列、データフレーム、外れ値の影響などを取り上げています。著者は、教育心理学を専門とする学者たちで、各自が教育機関での実績を持っています。

みんなのレビュー

Rを使って統計学の基本を分かりやすく手を動かしながら学べる書籍。Rを学ぶならまずこの本からはじめるのがオススメ!

No.6
67

この書籍は、数理モデルを用いて現象を理解するための基本的な統計モデルの考え方を、章ごとに異なる例題を通じて解説しています。前半では一般化線形モデル(GLM)の基礎を紹介し、後半では階層ベイズモデル化の手法をRとWinBUGSを用いて具体的に説明します。著者は久保拓弥氏で、生態学のデータ解析に関する統計学的方法を研究しています。

みんなのレビュー

線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。

No.8
65

この書籍は、マーケティング調査や金融リスク、株・為替のボラティリティ、選挙の出口調査など、さまざまな分野でのデータ分析の基礎を解説しています。内容は、標準偏差や検定、区間推定などの基本的な統計手法から、観測データを用いた母集団の推定方法まで幅広くカバーしています。著者は帝京大学の助教授で、数理経済学を専門とする小島寛之氏です。

みんなのレビュー
まだレビューはありません
No.11
65

本書では、統計学があらゆる学問の中で最強である理由を解説し、現代社会におけるその重要性や影響力を最新の事例を通じて探求しています。著者は、統計学の基本概念や手法(サンプリング、誤差、因果関係、ランダム化など)を紹介し、統計学の魅力とパワフルさを伝えます。著者は東京大学出身の専門家で、データを活用した社会イノベーションに取り組んでいます。

みんなのレビュー

学生の時にこの書籍を読んで統計学に興味を持った。統計学の魅力について分かりやすく学べる書籍。専門的な内容はそれほどないのでスラスラ読める。統計学ってどんなことができるの?なんでそんなにすごいの?ということを知りたい人がまず最初に読むべき本。

No.12
64

本書は、ビジネスにおけるデータ分析の重要性とそのバイアスを取り除くための手法を解説しています。特に、意思決定に影響を与えるデータの生成過程におけるバイアスの存在を指摘し、単純な比較が誤った結論を導く可能性について警鐘を鳴らします。著者は、RCT(ランダム化比較試験)を理想的な分析手法として紹介し、RCTが実施できない場合でも因果推論を用いて効果的な分析が可能であることを説明します。目次には、セレクションバイアスや回帰分析、傾向スコア、差分の差分法などの具体的な手法が含まれています。著者は経済学の専門家で、データサイエンスの分野でも活躍しています。

みんなのレビュー
まだレビューはありません
No.13
64

この書籍は、RとPythonの両方を学べるデータサイエンスの入門書です。プログラミング経験がなくても理解できるように、データサイエンスの基礎や環境構築について詳しく解説しています。内容は、データサイエンスの準備、機械学習の手法(回帰、分類、深層学習など)に分かれており、実践的なサンプルコードも提供されています。著者は東京大学と千葉工業大学の教授で、情報処理技術者試験委員を務めています。

みんなのレビュー
まだレビューはありません
No.14
63

はじめての統計学

鳥居 泰彦
日経BPマーケティング(日本経済新聞出版

この書籍は、数学が苦手な人でも理解できるように、統計学の基礎知識を丁寧に解説した入門書です。練習問題を通じて統計学のエッセンスを身につけられるワークブックで、内容は統計学の基本概念から始まり、標本分布、確率分布、仮説検定、相関分析、回帰分析などのテーマを扱っています。学習を通じて考える力を養うことを重視しています。

みんなのレビュー
まだレビューはありません
No.15
63

この書籍は、統計学の基本を体系的に学べる内容で、初心者から統計学全般を理解したい人に適しています。公式の背後にある分析の考え方を重視し、例題や演習問題を通じて知識を深めることができます。第2版では、確率や仮説検定の内容が強化され、多変量解析やベイズ統計学の理論も追加されています。著者は千葉大学の教授で、農業経営や消費者行動分析の専門家です。

みんなのレビュー
まだレビューはありません
No.16
62

この書籍は、ベイズ統計の基本とその応用方法を、統計の基礎知識がない人にもわかりやすく解説しています。柔軟な事前確率を用いることで、あいまいな人間の経験則を取り入れ、実用的な情報を導き出すことができると説明されています。目次には、ベイズの定理や応用、MCMC法、階層ベイズ法などが含まれています。著者は涌井良幸で、数学教育と統計学の研究に取り組んでいます。

みんなのレビュー
まだレビューはありません
No.17
62

本書は、ビジネスにおけるベイズ統計学の基本をわかりやすく解説した入門書です。中学数学の知識がなくても理解できるように工夫されており、特にIT業界や統計に興味があるビジネスパーソンに最適です。内容は、ベイズ推定の使い方や確率論の基礎、確率分布などを含み、実用的な視点から未来を予測するための統計学を学べます。著者は帝京大学の教授、小島寛之氏です。

みんなのレビュー
まだレビューはありません
No.18
62

この文章は、統計学に関する書籍の目次と著者情報を紹介しています。目次には、一変量データや多変量データの記述、確率分布、推定方法、仮説検定などのテーマが含まれています。著者は神永正博と木下勉で、それぞれの学歴と職歴が簡潔に記載されています。神永は数学の博士で、木下は工学の博士です。

みんなのレビュー
まだレビューはありません
No.19
62

この書籍は、データ分析における視点を磨き、質の高い研究を行うためのガイドです。内容は、無作為性や統計的推測、研究デザイン、データ解析の基礎について解説しています。目次は基礎編とアラカルト編に分かれ、平均値や頻度、イベント発生時間の比較方法も取り上げています。著者は丹後俊郎氏で、医学統計学の専門家です。

みんなのレビュー
まだレビューはありません
No.21
62

この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。

みんなのレビュー

「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。

No.23
62

本書は、欠測データの解析における多重代入法の実用的な手法を解説しています。従来の書籍では理論中心でしたが、本書では具体的な応用事例や手順を示し、社会科学の分析手法(t検定、重回帰分析、ロジスティック回帰分析など)における欠測データ処理を詳述しています。Rコードと実データを用いて、読者が実際に手順を再現しながら学ぶことができるようになっています。著者は、統計科学や不完全データ処理法の専門家です。

みんなのレビュー
まだレビューはありません
No.25
61

本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。

みんなのレビュー

データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!

No.26
61

この書籍は、時系列分析の基礎から応用までを詳しく解説しています。内容は、時系列分析の基礎概念、ARMA過程、予測手法、VARモデル、単位根過程、見せかけの回帰と共和分、GARCHモデル、状態変化を伴うモデルに分かれています。著者の沖本竜義は、経済学と統計学の専門家であり、実データへの応用に必要な知識を提供しています。

みんなのレビュー
まだレビューはありません
No.27
62

統計ソフトが行なっている推定・検定の背景の理論を知りたい。推定・検定を仕事で使っているけれど、結論の意味していることが実は理解できていない。そんな、文系・理系出身者の方々に向け、推定・検定の背景にある原理を難しい数式や確率変数の概念を使わずに図像を用いてわかりやすく説明しています(第1章)。 第1章 (相対度数分布グラフ 平均、分散・標準偏差 サンプルXの相対度数分布グラフ 正規分布 推定の考え方 検定の考え方) 第2章 (確率変数 二項分布 推定の応用 検定の応用 χ2分布、t分布、F分布) 第3章 (2変量の統計)

みんなのレビュー
まだレビューはありません
No.29
60

本書は、統計解析の基礎手法を幅広く解説した入門書であり、統計解析の全体像を把握することができます。目次には、データ整理、分布と期待値、検定・推定の考え方、分散分析、相関分析、回帰分析などが含まれています。

みんなのレビュー
まだレビューはありません
No.30
59

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page. FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

みんなのレビュー
まだレビューはありません
No.31
59

自然科学・工学・医学等への応用をめざしつつ,さまざまな統計学的考え方を紹介し,その基礎をわかりやすく解説する.シリーズIと同様に,豊富に実際例を用いつつ,図表を多くとり入れて,視覚的にもわかりやすく統計学を親しみながら学べるよう編集した. 第1章 確率の基礎(矢島美寛) 第2章 線形モデルと最小二乗法(廣津千尋) 第3章 実験データの分析(藤野和建) 第4章 最尤法(廣津千尋) 第5章 適合度検定(廣津千尋) 第6章 検定と標本の大きさ(竹村彰通) 第7章 分布の仮定(竹内 啓,藤野和建) 第8章 質的データの統計的分析(縄田和満) 第9章 ベイズ決定(松原 望) 第10章 確率過程の基礎(矢島美寛) 第11章 乱数の性質(伏見正則)

みんなのレビュー
まだレビューはありません
No.33
59

本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。

みんなのレビュー
まだレビューはありません
No.34
58
みんなのレビュー
まだレビューはありません
No.35
58

現代数理統計学の基礎

みんなのレビュー

統計検定1級の対策のために購入。この本の9章までを通読すれば、統計数理の過去問を解く際に必要な知識はほぼ全て網羅されます。通読の際には命題や定理の証明も全て手で追うと効果的です。計算力が養われます。証明においては一部天下り的に方針が示されている箇所やそもそも証明が省略されている定理があり、モヤモヤすることもありますが、統計検定1級という限定的な範囲では出題されない知識に由来する部分なので、試験対策と割り切れば問題ありません。本書で省略されている証明(尤度比検定統計量の分布収束など)が記載されている書籍として、平行して参照するのにおすすめなのは竹村著の"現代数理統計学"です。想定読者のレベルや難易度は共通していますが、内容の過不足を補完できる関係にあり、また、同一事項に対しても説明や解釈の切り口が違っていて知識を有機的に繋げるのに役立ちます。

No.36
58
みんなのレビュー
まだレビューはありません
No.38
59
みんなのレビュー
まだレビューはありません
No.39
58

本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。

みんなのレビュー
まだレビューはありません
No.40
58
みんなのレビュー
まだレビューはありません
No.42
58
みんなのレビュー
まだレビューはありません
No.43
58

本書は、回帰分析、重回帰分析、ロジスティック回帰分析について解説しており、基礎知識から実践的な計算方法までをカバーしています。著者は高橋信氏で、統計学を基にした情報サービス業に従事しています。

みんなのレビュー
まだレビューはありません
No.46
58

本書は「統計モデリングの世界」への入門書で、統計、確率、ベイズ推論、MCMCの基本をチュートリアル形式で学べる内容です。RやStanを用いたデータ分析の基礎から、一般化線形モデルや一般化線形混合モデル、状態空間モデルまでを体系的に解説しています。データサイエンスを学ぶ大学生やエンジニア向けの実践的なシリーズの一環として、すぐに実践できるスキルを身につけることができます。

みんなのレビュー
まだレビューはありません
No.47
58

本書は、多変量解析法の入門書であり、統計的方法を習得した人を対象に、簡単な例を用いて理論を2次行列で解説しています。主要な内容には、単回帰分析、重回帰分析、主成分分析、クラスター分析などが含まれています。著者は早稲田大学の教授で、統計学に関する多くの著作があります。

みんなのレビュー
まだレビューはありません
No.48
58

この文章は、永田靖著の書籍の目次と著者情報を紹介しています。書籍は3部構成で、基礎と1変数関数の微積分、線形代数、多変数関数の微積分について解説しています。著者は1957年生まれで、早稲田大学で教授を務めています。

みんなのレビュー
まだレビューはありません
No.49
58

本書は最適化手法についての入門書であり、経営学やオペレーションズリサーチだけでなく、統計的最適化や機械学習の話題も扱っています。計算機技術の進歩により、複雑な最適化問題が解決可能になった背景を踏まえ、各手法の原理や数学的背景を詳しく解説しています。内容は例題を多く用いて分かりやすく、関連する話題や注意点も随所に挿入されています。目次には数学的準備、関数の極値、最適化手法、最小二乗法、統計的最適化、線形・非線形計画法、動的計画法が含まれています。著者は岡山大学の金谷健一教授です。

みんなのレビュー

内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊

No.50
58

本書は、機械学習の発展を背景にした統計的学習に関する教科書「The Elements of Statistical Learning」の全訳です。機械学習は人工知能の一分野から発展し、統計学と密接に関連しています。内容は、教師あり学習の基礎からニューラルネットワークやサポートベクトルマシン、ブースティングなどの高度な手法まで幅広くカバーしており、情報技術を学ぶ大学生や研究者に最適です。著者は各分野の専門家で構成されています。

みんなのレビュー
まだレビューはありません
No.51
58

本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーやグラフニューラルネットワーク、生成モデルなどの手法を詳しく解説しています。著者は、理論的な証明がなくても納得できる説明を重視し、実用性を考慮した内容を提供。全12章で、基本構造から各種学習方法、データが少ない場合の対策まで幅広く網羅しています。著者は東北大学の教授であり、実務家との共同研究の経験も反映されています。

みんなのレビュー
まだレビューはありません
No.52
58

【数研講座シリーズの特徴】多くの学生の声から生まれた,丁寧な解説でわかりやすい今までにない大学教材。既刊と同様,以下の趣旨を引き継いでいる。POINT.1高校の教科書・参考書とおなじようなレイアウトを採用している。POINT.2内容は厳密さを重視。大学の統計学の講座で学ぶ主な内容を扱っている。POINT.3独習ができるようにしっかりと丁寧に書かれているので,オンライン講義で教員が居なくても不安なく読書を進められる。【教科書の特徴】■統計学の知識を用いて行う推定→検定の流れを段階ごとに解説している。■推定→検定の段階には,観察で得たデータをもとにデータからわかることについて仮説を立てる,データを整理しデータの特徴を 把握する,立てた仮説を数式を用いてモデル化する,そのモデルの正確性を見極める,モデルから検定を行うがある。章ごとに,これらについて詳しく解説している。■推定や検定には,大学で同時に学習する微分積分学や高校数学の復習の知識が必要不可欠である。これらについても必要に応じてその場で説明を加えている。■統計学は,純粋数学の教科書の展開である定義→定理(命題)の明示→その証明という流れとはと異なる独特の展開で解説される。■独特の展開の例 a 定義を用語として明示している。 b 定理(命題)の証明は重要であるが,統計学では,現実の数値が適応される実例で雰囲気を掴むことが重要であるので,例示が多くなっている。 c 例示の展開に倣う(慣れる)ことで,一般的な展開についても同時に読み取ることが可能である。■統計学を扱う専門書うち,一つの演習問題に対して,これほど詳説されたものは多くない。※多くの類書では,「~分布の確率を求めよ」のようにパターン的な問題が多く扱われている(本書では,これらの問題も扱う)。しかし,そのパターンの前にある根本的な計算に立ち返り,詳しい計算展開を示している。■教科書の問題についてそれを扱う例題で詳解すること,教科書にない問題についても例題化し詳解することで,教科書とチャートの相互補完を行い,2冊合わせて学習することで,理解の相乗効果を得られるように配慮している。 第0章 統計学を学ぶに当たって 第1章 標本とデータ 第2章 クロスセクショナルなデータのための記述統計 第3章 確率論の概要 第4章 モデルとパラメータの推定 第5章 統計的仮説検定

みんなのレビュー
まだレビューはありません
No.53
58

本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」という視点から整理しています。新たに「ML Ops」や「機械学習モデルの検証」などの章が追加され、読者が直面する問題解決に役立つ内容となっています。著者は機械学習分野の専門家で、実践的な知識を提供しています。

みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

No.55
58

この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。

みんなのレビュー

デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!

No.57
57
みんなのレビュー

ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。

No.58
57

『A First Course in Bayesian Statistical Methods』の日本語訳で、ベイズ統計の基礎と計算手法を学ぶ書籍です。確率論の基本から始まり、正規モデルや階層モデル、線形回帰モデルなどのベイズ法を詳述し、潜在変数モデルなどの応用も紹介しています。Rによる実装方法やサンプルコードも提供され、社会科学や医学、生物学など多様な分野での応用例が取り上げられています。著者はピーター・D・ホフ教授で、他に翻訳者として入江薫、菅澤飯之助、橋本真太郎が関わっています。

みんなのレビュー
まだレビューはありません
No.60
57

本書では、一般的に信じられている通説(例:健診で健康になる、テレビが学力を下げる、偏差値の高い大学が収入を上げる)が経済学の研究によって否定される理由を解説しています。著者は「因果推論」の手法を用い、数式なしでわかりやすく説明することで、根拠のない通説にだまされない力を養うことを目指しています。各章では、様々な因果関係を証明する方法(ランダム化比較試験、自然実験、差の差分析など)を紹介しています。

みんなのレビュー
まだレビューはありません
No.61
57

この書籍は、データ分析の基礎から応用までを学べる内容で、データ可視化や統計手法、仮説検定、重回帰分析など、一生使えるスキルを身につけることができます。著者はデータサイエンティストとしての豊富な経験を持ち、実務に役立つ知識を提供しています。目次にはデータ分析の全体像や具体的な手法が紹介されています。

みんなのレビュー
まだレビューはありません
No.62
57

本書は、機械学習を実践的に学ぶための教材で、scikit-learn、TensorFlow、Kerasを用いて、基礎から応用までの手法を体系的に解説しています。内容には、データ処理、モデル学習、深層学習、強化学習、コンピュータビジョン、自然言語処理などが含まれ、サンプルコードはすべてGitHubで公開され、Jupyter Notebookで試すことができます。第2版では新たに畳み込みニューラルネットワークやGANによる画像生成の説明も追加されています。機械学習を学びたいエンジニアにとって必携の一冊です。

みんなのレビュー
まだレビューはありません
No.63
57

この書籍は、ディープラーニングを手を動かしながら学べる入門書で、最新のトレンドや無料クラウドGPUの活用法を解説しています。20以上の実例を通じて、機械学習や深層学習の基礎から応用までを学べる内容です。目次には、学習の地図、基礎知識、実践事例、Colaboratoryの使い方が含まれています。著者はIT企業での技術マネージャーとしての経験を持つ増田知彰氏です。

みんなのレビュー
まだレビューはありません
No.65
57

この書籍は、マルコフ連鎖モンテカルロ法(MCMC)を理解しやすく解説しており、R言語のコードや練習問題が豊富に含まれています。初学者向けの内容ながら、エルゴード性などの高度なトピックにも触れています。データサイエンス教育の一環として、統計学と情報学を融合した新しい教科書シリーズの一部であり、実践的な教育を目指しています。著者は、数理科学と統計科学の分野で活躍する専門家です。

みんなのレビュー
まだレビューはありません
No.66
57
みんなのレビュー
まだレビューはありません
No.67
57

本書は、時系列データの分析方法を基礎から解説しています。探索的手法として移動平均、確率的手法として状態空間モデルを取り上げ、数式の意味やコードへの落とし込み方を丁寧に説明しています。初めて時系列分析を試みる人や、既に関わっている人にも興味深い内容となっており、応用的な話題もカバーしています。著者は牧山幸史、監修は石田基広です。

みんなのレビュー
まだレビューはありません
No.68
57

本書は、ネットワーク分析の理論と実践をRというフリーソフトを用いて学ぶためのガイドです。第2版では、統計的なネットワーク分析手法や社会ネットワーク、ソーシャルメディアの分析法に関する新しい章が追加され、複雑ネットワークやネットワーク描画の内容も改訂されています。著者は鈴木努で、社会学を専攻し、東北学院大学の准教授として勤務しています。

みんなのレビュー
まだレビューはありません
No.69
55
みんなのレビュー
まだレビューはありません
No.70
57

本書は、ビッグデータ時代におけるSQLの活用法を紹介するレシピ集です。目次には、分析力の重要性、使用するツールとデータ、データ加工、売上やユーザー行動のデータ抽出、分析技術の向上、行動を起こすための知識の活用方法が含まれています。著者は加嵜長門と田宮直人で、双方ともデータ解析およびビッグデータ活用の専門家です。

みんなのレビュー
まだレビューはありません
No.71
58

統計学

久保川 達也
東京大学出版会

初学者のための統計学のテキスト.豊富な図を用いて,統計学を学ぶ動機づけから,社会や経済への応用までを丁寧に説明.数学と統計ソフトについてもやさしく解説.著者たちの長年にわたる講義でのノウハウが詰まった,生きた学問としての「統計学」を学ぶための最適の書. はしがき 第1章 統計学とその役割  1.1 データは語る  1.2 統計の役割 第I部 基礎事項 第2章 分布の特徴を探る  2.1 分布の特徴  2.2 分布の中心  2.3 分布の散らばり  2.4 データの標準化と歪度,尖度  2.5 発展的事項  【問 題】 第3章 度数分布から不平等度を測る  3.1 度数分布とヒストグラム  3.2 ローレンツ曲線とジニ係数  3.3 ローレンツ曲線の例  3.4 発展的事項  【問 題】 第4章 変数間の関係性をみる  4.1 相関  4.2 回帰  4.3 偏相関  4.4 発展的事項  【問 題】 第II部 確 率 第5章 確率の基礎  5.1 確率と事象  5.2 条件付き確率と事象の独立性  5.3 発展的事項  【問 題】 第6章 確率分布と期待値  6.1 離散確率変数と確率関数  6.2 連続確率変数と確率密度関数  6.3 確率分布の平均と分散  6.4 確率変数の標準化と変数変換  6.5 発展的事項  【問 題】 第7章 代表的な確率分布  7.1 離散確率分布  7.2 連続分布  7.3 発展的事項  【問 題】 第8章 多変数の確率分布  8.1 同時確率分布と周辺分布  8.2 期待値,共分散,相関  8.3 2つ以上の確率変数の分布  8.4 発展的事項  【問 題】 第III部 統計的推測 第9章 ランダム標本と標本分布  9.1 標本と統計量  9.2 標本平均の性質  9.3 標本平均の分布  9.4 代表的な統計量の性質  9.5 正規母集団の代表的な標本分布  9.6 発展的事項  【問 題】 第10章 推定  10.1 点推定  10.2 最尤法とモーメント法  10.3 平均2乗誤差による評価  10.4 区間推定  10.5 発展的事項  【問 題】 第11章 仮説検定  11.1 仮説検定の考え方  11.2 正規母集団に関する検定  11.3 近似分布に基づいた検定  11.4 カイ2乗適合度検定  11.5 発展的事項  【問 題】 第12章 回帰分析  12.1 単回帰モデル  12.2 決定係数と残差分析  12.3 重回帰モデル  12.4 分散分析  12.5 ロジスティック回帰モデル  12.6 発展的事項 第IV部 社会・経済・時系列データ 第13章 経済・社会データと統計分析  13.1 有限母集団と標本調査  13.2 時系列データ  13.3 経済指数の利用 第14章 時系列の統計分析  14.1 時系列データと統計モデル  14.2 自己回帰移動平均モデル  14.3 発展的事項  【問 題】  時系列データの実習 付録1 統計計算ソフトウェア (1)R入門 (2)エクセル入門 付録2 数学の基礎知識 (1)基本事項 (2)微分積分 (3)行列と行列式 付 表 1.正規分布表(正規分布の上側確率) 2.t分布のパーセント点 3.カイ2乗分布のパーセント点 4.F分布のパーセント点 参考文献/あとがき/索引/著者紹介 STATISTICS Tatsuya KUBOKAWA and Naoto KUNITOMO

みんなのレビュー
まだレビューはありません
No.72
55
みんなのレビュー
まだレビューはありません
No.73
57

本書は一般化線形モデルについての統一的な枠組みを提供するもので、回帰分析や生存分析など様々な統計手法を扱っています。1993年に翻訳された「統計モデル入門」の第2版で、特に医学分野での高度な統計手法の需要に応える内容となっています。目次にはモデルの当てはめ、推定、推測、ロジスティック回帰、生存時間解析などの章が含まれています。著者はそれぞれ異なる専門背景を持つ大学教授たちです。

みんなのレビュー
まだレビューはありません
No.74
55
みんなのレビュー
まだレビューはありません
No.75
57

本書『ビッグデータの正体』は、ビッグデータが私たちの生活や仕事、意識に与える影響を探る内容で、企業がどのように新たな価値を創造し、人々が物事の認知をどう変えるべきかを示しています。具体的には、グーグルやアマゾンのデータ活用法、電子書籍の進化、映画産業の予測能力などを例に挙げ、ビッグデータがもたらす変化を論じています。また、データの量が質を凌駕する時代や、因果関係から相関関係へのシフトについても触れています。著者はビッグデータの専門家であり、この分野の重要性を強調しています。

みんなのレビュー

ビッグデータがどのように世界を変えるのかが学べる書籍。鳥インフルエンザが流行った時に、医療機関よりも早くGoogleが検索傾向から流行地を知り対策を取れたという話からはじまる様々なビッグデータの使い方・重要性が学べる。

No.77
55
みんなのレビュー
まだレビューはありません
No.78
55
みんなのレビュー
まだレビューはありません
No.79
57
みんなのレビュー
まだレビューはありません
No.80
57
みんなのレビュー
まだレビューはありません
No.82
57

「統計検定準1級試験対応公式テキスト」は、統計学と機械学習の幅広いトピックをカバーし、実践的な例題を通じて学べる内容です。頻出項目に重点を置き、各トピックについて解説と例題が提供されています。統計的手法の辞典としても活用できる一冊です。目次には、確率、分布、統計的推定、検定法、回帰分析、多変量解析、時系列解析など、幅広いテーマが含まれています。

みんなのレビュー
まだレビューはありません
No.83
55
みんなのレビュー
まだレビューはありません
No.86
55
みんなのレビュー
まだレビューはありません
No.89
55
みんなのレビュー
まだレビューはありません
No.90
55

ビジネスや意思決定の場面で,データを活用したい方に手にとっていただきたいデータサイエンスの入門書。目的別の分析手法を幅広く… ビジネスや意思決定の場面で,データを活用したい方に向けたデータサイエンスの入門書。データの種類ごとの性質や収集時の注意点,目的別の分析手法からデータ可視化まで幅広く扱う。各章末には課題を設置し,最終章ではデータサイエンスの展望や限界についても言及。 第1章 データサイエンスとは 第2章 データ収集のための基礎知識 第3章 データ空間の構成法 第4章 データ生成のメカニズム 第5章 データの可視化手法 第6章 データ分析の手法 第7章 データ活用のフレームワーク 第8章 データの分析事例 第9章 データ分析上の注意点と応用知識

みんなのレビュー
まだレビューはありません
No.91
55
みんなのレビュー
まだレビューはありません
No.93
55
みんなのレビュー
まだレビューはありません
No.96
55
みんなのレビュー
まだレビューはありません
No.97
55
みんなのレビュー

異常検知について学ぶならこの本!非常に分かりやすく様々なアプローチについて学べる。PythonではなくてRでの実装なので注意

No.99
55
みんなのレビュー
まだレビューはありません
No.100
54
みんなのレビュー
まだレビューはありません
No.101
55

本書は、AI・データ分析プロジェクトの成功には技術知識だけでなく「ビジネス力」が重要であることを強調しています。データサイエンティストのキャリアや業界の概要から始まり、プロジェクトの立ち上げ、実行、評価、収益化までのノウハウを網羅。具体的には、課題設定、案件獲得、データ分析手法の検討、レポーティングなどのプロセスを解説し、実務に役立つ情報を提供しています。著者は業界の専門家で、実践的な知識を基にした内容となっています。

みんなのレビュー
まだレビューはありません
No.103
55

統計学入門 応用編

安川 正彬
日経BPマーケティング(日本経済新聞出版
みんなのレビュー
まだレビューはありません
No.104
54

Rで学ぶ統計学入門

嶋田 正和
東京化学同人
みんなのレビュー
まだレビューはありません
No.105
54
みんなのレビュー

ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!

No.106
55
みんなのレビュー
まだレビューはありません
No.107
54
みんなのレビュー
まだレビューはありません
No.108
54

本書は、データサイエンスの基本概念から実際のビジネス活用事例までを豊富な図やイラストを用いて解説し、初心者でも理解しやすい内容になっています。データサイエンスの重要性が増す中、数学的な専門用語を避けながら、機械学習や先端テクノロジーとの関連も紹介。ビジネスパーソンや学生にとって、データサイエンスを学ぶための入門書として最適です。

みんなのレビュー
まだレビューはありません
No.109
54
みんなのレビュー
まだレビューはありません
No.110
54
みんなのレビュー
まだレビューはありません
No.111
54

ビジネス統計学【上】

アミール・アクゼル
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.112
54
みんなのレビュー
まだレビューはありません
No.114
54
みんなのレビュー
まだレビューはありません
No.115
54

ビジネス統計学【下】

アミール・アクゼル
ダイヤモンド社
みんなのレビュー
まだレビューはありません
No.118
54
みんなのレビュー
まだレビューはありません
No.119
54

StanとRでベイズ統計モデリング

みんなのレビュー
まだレビューはありません
No.120
54
みんなのレビュー
まだレビューはありません
No.121
54
みんなのレビュー
まだレビューはありません
No.122
54
みんなのレビュー
まだレビューはありません
No.123
54
みんなのレビュー
まだレビューはありません
No.124
54
みんなのレビュー
まだレビューはありません
No.127
54
みんなのレビュー
まだレビューはありません
No.128
54
みんなのレビュー
まだレビューはありません
No.129
54
みんなのレビュー
まだレビューはありません
No.131
54
みんなのレビュー
まだレビューはありません
No.132
54

初歩から段階を踏み解説。難しい箇所には印を付し、目的に合わせた学習ができる。新たにデータ・サイエンスとの関連の章を新設。 長年好評を博してきた,信頼の厚い定番テキスト。初歩から段階を踏んで解説。やや難しい箇所には印を付し,目的に合わせた学習ができる。練習問題も充実している。近年の動向に合わせて,新たにデータ・サイエンスとの関連を説明する章を設けた最新版。 序 章 不確かさの時代に向き合う基本統計学 第1章 平均値と分散 第2章 度数分布 第3章 回帰と相関の分析 第4章 確 率 第5章 確率変数と確率分布 第6章 主な確率分布 第7章 標本分布 第8章 推 定 第9章 検 定 第10章 回帰の推測統計理論 終 章 統計学の歴史,因果関係分析,データ・サイエンス

みんなのレビュー
まだレビューはありません
No.134
54

確率編

みんなのレビュー
まだレビューはありません
No.135
55
みんなのレビュー
まだレビューはありません
No.137
54

ビジネス統計学 原書6版

デビッド・M・リヴィーン
丸善出版
みんなのレビュー
まだレビューはありません
No.138
54
みんなのレビュー
まだレビューはありません
No.139
54
みんなのレビュー
まだレビューはありません
No.140
54
みんなのレビュー
まだレビューはありません
No.141
54
みんなのレビュー
まだレビューはありません
No.142
54
みんなのレビュー
まだレビューはありません
No.143
54
みんなのレビュー
まだレビューはありません
No.145
54
みんなのレビュー
まだレビューはありません
No.146
54
みんなのレビュー
まだレビューはありません
No.147
55

2012年初版の全面改訂版。検定・推定の原理を理解した上でデータをソフトで解析でき、その結果を解釈できるようになる一冊。 2012年初版の全面改訂版。検定・推定の原理を理解した上で、与えられたデータをソフトで解析でき、その結果を解釈できるようになる一冊。 2012年初版のロングセラーを大幅にリニューアル! 20世紀初頭、統計学は確率論と結びついて、現象を解析する手法を編み出しました。その手法が、農場試験場で開発された「検定」です。「検定」は、私たちが観察した結果が偶然に起こったのか、それとも何か特定のパターンやメカニズムが働いているのかを判断するための手段です。本書の目的の一つは「検定」の原理を理解し、与えられたデータをソフトで解析でき、その結果を解釈できるようになることです。 1章では、検定・推定の原理の理解、検定・推定における前提と結論の解釈に重点をおいて改訂を行いました。2章では、オーソドックスに数学的な準備をしてから、検定・推定の細かな論理的展開を追っていきます。

みんなのレビュー
まだレビューはありません
No.148
54

統計編

みんなのレビュー
まだレビューはありません
No.149
54

入門タグチメソッド

立林 和夫
日科技連出版社
みんなのレビュー
まだレビューはありません
No.151
54

本書は確率についての基礎から応用までを扱っています。第1部では確率の定義や複数の確率変数、確率分布について説明し、第2部では推定や検定、擬似乱数の活用法を紹介しています。付録には数学の基礎事項や確率論の補足が含まれています。著者は数理工学の専門家で、機械学習や脳科学の研究に従事しています。

みんなのレビュー
まだレビューはありません
No.152
54
みんなのレビュー
まだレビューはありません
search