【2024年】「強化学習」のおすすめ 本 151選!人気ランキング
- Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
- 現場で使える!Python深層強化学習入門 強化学習と深層学習による探索と制御
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- ゼロから作るDeep Learning ❷ ―自然言語処理編
- Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
- 機械学習スタートアップシリーズ Pythonで学ぶ強化学習 [改訂第2版] 入門から実践まで
- 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
- 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
- 強化学習
- 詳細! Python 3 入門ノート
自然言語処理編
ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン
本書はディープラーニング、ニューラルネットワークについての予備知識がなくても学習を進められるようゼロから丁寧に、理論とその実装について解説します。 実装にはPythonのディープラーニング向けのライブラリ、TensorFlow (1.0) およびKeras (2.0) を用います。 「ディープラーニングについて何となくわかってはいるけれど、もう少し理解を深めたい」「画像認識だけでなく、時系列データを分析するためのモデルについても学びたい」という方にとって、学びの役に立つのではないかと思います。 単純パーセプトロンにはじまり、多層パーセプトロン、ディープニューラルネットワーク、リカレントニューラルネットワークなど多くの手法について学びます。扱うデータの種類ごとに考えるべき課題も異なり、それに合わせてネットワークも様々な形に変化させ学習を進めます。 ディープラーニングは1つひとつのテクニックの積み重ねであり、その根底にあるのは「人間の脳をどう数式やアルゴリズムで表現できるか」です。本書で学んできた土台となる理論さえきちんと理解していれば、今後どのようなディープラーニングの手法が出てこようとも、すぐに理解し使いこなせるようになるでしょう。そして、自身で新たなモデルを考え出すこともできるはずです。 [本書の構成] 1章では、ニューラルネットワークの理論を学習するうえで必要となる数学の知識について簡単におさらいし、続く2章では、実装に向けてのPython開発環境のセットアップ、およびPythonライブラリの簡単な使い方を扱います。 3章からは、いよいよニューラルネットワークの学習に入っていきます。3章ではその基本形について学び、4章ではディープニューラルネットワーク、いわゆるディープラーニングについて学びます。通常のニューラルネットワークと何が違うのか、どのようなテクニックが用いられているのかを実装を交えて理解します。 5、6章では、時系列データを扱うためのモデルであるリカレントニューラルネットワークについて詳しく学んでいきます。5章では、リカレントニューラルネットワークの基本形を簡単なデータ例を用いて理論・実装について学び、6章ではその応用例について扱います。
AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
強化学習編