についてお探し中...

【2024年】「強化学習」のおすすめ 本 151選!人気ランキング

この記事では、「強化学習」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
  2. 現場で使える!Python深層強化学習入門 強化学習と深層学習による探索と制御
  3. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  4. ゼロから作るDeep Learning ❷ ―自然言語処理編
  5. Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
  6. 機械学習スタートアップシリーズ Pythonで学ぶ強化学習 [改訂第2版] 入門から実践まで
  7. 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
  8. 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
  9. 強化学習
  10. 詳細! Python 3 入門ノート
他141件
No.3
97

この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの技術を理解し、実践的なテクニックや最近のトレンドも紹介します。また、ディープラーニングの優位性や深層化の理由についても考察しています。著者はコンピュータビジョンや機械学習の研究開発に従事する斎藤康毅氏です。

みんなのレビュー

ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。

@@SHEQu

No.4
91

『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。

みんなのレビュー

ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる

No.6
90
みんなのレビュー

強化学習の①理論②実装③応用が三拍子揃ってってバランスよく書かれた良書です。強化学習は理論部分の難易度が高く、最初に読む本を間違える(理論をちゃんと勉強してから実装や応用に進もうとする)と挫折してしまうリスクが高い分野ですが、本書を最初に読んでおけば間違いありません。書籍内で示されているサンプルコードも品質が高く、実務でもそのままプロダクション環境で使えるレベルです(※適用先ドメイン固有の例外処理などは追加実装する前提)。

No.9
83

強化学習

Richard S.Sutton
森北出版
みんなのレビュー
まだレビューはありません
No.10
82
みんなのレビュー
まだレビューはありません
No.11
81

フレームワーク編

みんなのレビュー
まだレビューはありません
No.13
80

本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。

みんなのレビュー

データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!

No.14
80
みんなのレビュー

ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。

No.16
79
みんなのレビュー
まだレビューはありません
No.18
78

本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」観点から整理しています。新たに「ML Ops」「機械学習モデルの検証」「バンディットアルゴリズム」「オンライン広告での機械学習」についての章が追加され、読者が実際の問題を解決するための知識を提供します。著者は、機械学習の実務経験を持つ専門家たちです。

みんなのレビュー

機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。

No.19
77
みんなのレビュー

AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。

No.21
71
みんなのレビュー
まだレビューはありません
No.23
70

つくりながら学ぶ! 深層強化学習 ~PyTorchによる実践プログラミング~

株式会社電通国際情報サービス 小川雄太郎
マイナビ出版
みんなのレビュー
まだレビューはありません
No.31
69
みんなのレビュー
まだレビューはありません
No.33
68
みんなのレビュー
まだレビューはありません
No.34
68
みんなのレビュー
まだレビューはありません
No.35
68
みんなのレビュー
まだレビューはありません
No.37
68
みんなのレビュー
まだレビューはありません
No.38
68
みんなのレビュー
まだレビューはありません
No.42
63

ディープラーニング活用なくしてビジネスの飛躍的成長なし

みんなのレビュー
まだレビューはありません
No.46
63

ヨシュア・ベンジオ スチュアート・J・ラッセル ジェフリー・ヒントン ニック・ボストロム ヤン・ルカン フェイフェイ・リー デミス・ハサビス アンドリュー・エン ラナ・エル・カリウビ レイ・カーツワイル ダニエラ・ルス ジェイムズ・マニカ ゲアリー・マーカス バーバラ・J・グロース ジュディア・パール ジェフリー・ディーン ダフニー・コラー デイヴィッド・フェルッチ ロドニー・ブルックス シンシア・ブリジール ジョシュア・テネンバウム オーレン・エツィオーニ ブライアン・ジョンソン

みんなのレビュー
まだレビューはありません
No.50
61

本書はディープラーニング、ニューラルネットワークについての予備知識がなくても学習を進められるようゼロから丁寧に、理論とその実装について解説します。 実装にはPythonのディープラーニング向けのライブラリ、TensorFlow (1.0) およびKeras (2.0) を用います。 「ディープラーニングについて何となくわかってはいるけれど、もう少し理解を深めたい」「画像認識だけでなく、時系列データを分析するためのモデルについても学びたい」という方にとって、学びの役に立つのではないかと思います。 単純パーセプトロンにはじまり、多層パーセプトロン、ディープニューラルネットワーク、リカレントニューラルネットワークなど多くの手法について学びます。扱うデータの種類ごとに考えるべき課題も異なり、それに合わせてネットワークも様々な形に変化させ学習を進めます。 ディープラーニングは1つひとつのテクニックの積み重ねであり、その根底にあるのは「人間の脳をどう数式やアルゴリズムで表現できるか」です。本書で学んできた土台となる理論さえきちんと理解していれば、今後どのようなディープラーニングの手法が出てこようとも、すぐに理解し使いこなせるようになるでしょう。そして、自身で新たなモデルを考え出すこともできるはずです。 [本書の構成] 1章では、ニューラルネットワークの理論を学習するうえで必要となる数学の知識について簡単におさらいし、続く2章では、実装に向けてのPython開発環境のセットアップ、およびPythonライブラリの簡単な使い方を扱います。 3章からは、いよいよニューラルネットワークの学習に入っていきます。3章ではその基本形について学び、4章ではディープニューラルネットワーク、いわゆるディープラーニングについて学びます。通常のニューラルネットワークと何が違うのか、どのようなテクニックが用いられているのかを実装を交えて理解します。 5、6章では、時系列データを扱うためのモデルであるリカレントニューラルネットワークについて詳しく学んでいきます。5章では、リカレントニューラルネットワークの基本形を簡単なデータ例を用いて理論・実装について学び、6章ではその応用例について扱います。

みんなのレビュー
まだレビューはありません
No.51
62
みんなのレビュー
まだレビューはありません
No.53
61

Practical Reinforcement Learning

Akhtar, Dr. Engr. S.M. Farrukh
Packt Publishing
みんなのレビュー
まだレビューはありません
No.57
61
みんなのレビュー
まだレビューはありません
No.64
60
みんなのレビュー
まだレビューはありません
No.65
60
みんなのレビュー
まだレビューはありません
No.67
60

世界のトップ企業50はAIをどのように活用しているか?

バーナード・マー
ディスカヴァー・トゥエンティワン
みんなのレビュー
まだレビューはありません
No.69
60

機械学習のための数学

Marc Peter Deisenroth
共立出版
みんなのレビュー
まだレビューはありません
No.70
60
みんなのレビュー
まだレビューはありません
No.72
60

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.74
60
みんなのレビュー
まだレビューはありません
No.79
60
みんなのレビュー

ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。

No.81
60

深層強化学習入門

Vincent Francois-Lavet
共立出版
みんなのレビュー
まだレビューはありません
No.82
60

AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来

みんなのレビュー
まだレビューはありません
No.85
60
みんなのレビュー

ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。

No.91
60

文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答

みんなのレビュー
まだレビューはありません
No.93
59
みんなのレビュー
まだレビューはありません
No.94
59

人工知能 人工知能と世界の見方 人工知能と社会

みんなのレビュー
まだレビューはありません
No.101
59

強化学習編

みんなのレビュー

強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。

No.102
60
みんなのレビュー
まだレビューはありません
No.111
59

本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーや生成モデルなどの手法を詳しく解説しています。著者は、実用性を重視し、理論的な証明がなくても納得できる説明を提供することにこだわっています。全12章で構成され、深層学習の基本から応用までを網羅しており、特に実務に役立つ情報が反映されています。著者は東北大学の教授で、研究経験を基にした内容です。

みんなのレビュー
まだレビューはありません
No.113
59
みんなのレビュー
まだレビューはありません
No.117
59
みんなのレビュー
まだレビューはありません
No.119
59
みんなのレビュー
まだレビューはありません
No.120
59
みんなのレビュー

初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。

No.123
60

学習とそのアルゴリズム POD版―ニューラルネットワーク・遺伝アルゴリズム・強化学習

電気学会GAニューロを用いた学習とその応用調査専門委員会
森北出版
みんなのレビュー
まだレビューはありません
No.124
60
みんなのレビュー
まだレビューはありません
No.125
60
みんなのレビュー
まだレビューはありません
No.126
60

生成モデル編

みんなのレビュー
まだレビューはありません
No.127
59
みんなのレビュー
まだレビューはありません
No.128
60
みんなのレビュー
まだレビューはありません
No.130
59
みんなのレビュー
まだレビューはありません
No.135
59

『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。

みんなのレビュー

Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。

No.137
60

FINAL FANTASY XV の人工知能 - ゲームAIから見える未来

株式会社スクウェア・エニックス『FFXV』AIチーム
ボーンデジタル
みんなのレビュー
まだレビューはありません
No.138
59
みんなのレビュー
まだレビューはありません
No.148
60
みんなのレビュー
まだレビューはありません
search