についてお探し中...

【2024年】「画像認識」のおすすめ 本 124選!人気ランキング

この記事では、「画像認識」のおすすめ 本 をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
  1. 今すぐ試したい! 機械学習・深層学習(ディープラーニング) 画像認識プログラミングレシピ
  2. 詳解 OpenCV 3 ―コンピュータビジョンライブラリを使った画像処理・認識
  3. Pythonで始めるOpenCV 4プログラミング
  4. 画像認識 (機械学習プロフェッショナルシリーズ)
  5. ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
  6. 入門 Python 3 第2版
  7. 増補改訂版 図解でわかる はじめてのデジタル画像処理
  8. 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
  9. OpenCV4基本プログラミング: さらに進化した画像処理ライブラリの定番
  10. OpenCVによる画像処理入門 改訂第2版 (KS情報科学専門書)
他114件
No.3
89
みんなのレビュー
まだレビューはありません
No.5
85
みんなのレビュー
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
@@SHEQu
No.12
75
みんなのレビュー
まだレビューはありません
No.14
74
みんなのレビュー
まだレビューはありません
No.15
74
みんなのレビュー
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
No.18
73
みんなのレビュー
ある程度構文を覚えた後にPythonでの分析に慣れたいのであればこの書籍一択。Pythonでのデータ分析に慣れるためにはとにかく手を動かしまくること!
No.19
72
みんなのレビュー
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。
No.21
72
みんなのレビュー
まだレビューはありません
No.23
71

個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ

みんなのレビュー
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
No.24
71

画像認識について初めて学ぶ人でも全体像が把握できるよう、ポイントをまとめて解説する。 画像認識について初めて学ぶ人でも全体像が把握できるよう、データの基礎的な知識や撮影方法から具体的な画像処理手法、さらに画像認識の進化に欠かせない機械学習や深層学習と画像認識の関係なども含め、ポイントをまとめて解説する。

みんなのレビュー
まだレビューはありません
No.26
71
みんなのレビュー
まだレビューはありません
No.27
71
みんなのレビュー
まだレビューはありません
No.28
71
みんなのレビュー
まだレビューはありません
No.30
66
みんなのレビュー
まだレビューはありません
No.33
64

ディープラーニング活用なくしてビジネスの飛躍的成長なし

みんなのレビュー
まだレビューはありません
No.34
64
みんなのレビュー
まだレビューはありません
No.36
64
みんなのレビュー
まだレビューはありません
No.37
64
みんなのレビュー
まだレビューはありません
No.38
64

ディジタル画像処理[改訂第二版]

ディジタル画像処理編集委員会
画像情報教育振興協会
みんなのレビュー
まだレビューはありません
No.39
64
みんなのレビュー
まだレビューはありません
No.40
62

生成型ディープラーニングの解説。人間にしかできないと思われていた創造的な作業を機械に行わせる技術の基礎から応用までを学ぶ。 生成型ディープラーニングの基礎から応用までを網羅! 生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。第I部は基礎編です。機械学習プログラミング、変分オートエンコーダ、GANやVAEなど、生成モデルの作成において重要な基礎技術を学びます。第II部は応用編です。CycleGAN、エンコーダ―デコーダモデル、MuseGANなどのモデルを作成し、作画、作文、作曲といった創造的なタスクに取り組みます。さらには、実環境を用いずにゲームプレイAIの学習を可能にする、世界モデルを使った強化学習にも取り組みます。最後に生成モデリングの未来として、StyleGAN、BigGAN、BERT、GPT-2、MuseNetなどのアーキテクチャを紹介します。

みんなのレビュー
まだレビューはありません
No.44
63
みんなのレビュー
まだレビューはありません
No.45
63
みんなのレビュー
まだレビューはありません
No.50
62
みんなのレビュー
まだレビューはありません
No.51
62
みんなのレビュー
まだレビューはありません
No.52
62
みんなのレビュー
まだレビューはありません
No.53
62
みんなのレビュー
初心者がプログラミングを学びやすい構成が魅力。Pythonの基本的な文法から実際にコードを書く過程まで、わかりやすい解説でスムーズに学べます。豊富な例題や演習が用意されているため、しっかりと理解を深めながら進めることができ、実践的なスキルが身につく点がポイントです。初めてPythonに触れる人でも安心して学べます。
No.54
62
みんなのレビュー
まだレビューはありません
No.55
62

AI白書 2020

独立行政法人情報処理推進機構 AI白書編集委員会
KADOKAWA
みんなのレビュー
まだレビューはありません
No.56
62

Multiple View Geometry in Computer Vision

Hartley, Richard
Cambridge University Press
みんなのレビュー
まだレビューはありません
No.57
62
みんなのレビュー
まだレビューはありません
No.59
62
みんなのレビュー
AIの権威である東大の松尾豊教授の書籍。小難しい内容はほとんどなく、一般受けするような内容でAIの今後について分かりやすく学べる書籍。
No.62
62
みんなのレビュー
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
No.64
62
みんなのレビュー
ゴリゴリのデータサイエンティストやAIエンジニアを目指す人というよりも、コンサルタントやAIプランナーを目指す人向けの本。
No.65
62

線形代数とその応用

ギルバート ストラング
産業図書
みんなのレビュー
まだレビューはありません
No.67
62
みんなのレビュー
まだレビューはありません
No.69
62
みんなのレビュー
まだレビューはありません
No.70
62
みんなのレビュー
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
No.71
62
みんなのレビュー
まだレビューはありません
No.72
61
みんなのレビュー
まだレビューはありません
No.73
61
みんなのレビュー
まだレビューはありません
No.74
61

人工知能 人工知能と世界の見方 人工知能と社会

みんなのレビュー
まだレビューはありません
No.76
61

The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on: fast transforms; parallel LU; discrete Poisson solvers; pseudospectra; structured linear equation problems; structured eigenvalue problems; large-scale SVD methods; and, polynomial eigenvalue problems. Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature-everything needed to become a matrix-savvy developer of numerical methods and software.

みんなのレビュー
まだレビューはありません
No.77
61

みんなのRaspberry Pi入門 第4版

石井 モルナ
リックテレコム
みんなのレビュー
まだレビューはありません
No.78
61
みんなのレビュー
まだレビューはありません
No.80
61
みんなのレビュー
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
No.82
61

コンピュータビジョンの代表的な計算手順(アルゴリズム)について,詳細に解説. OpenCVやWeb上のプログラムなど,コンピュータビジョンを行ううえでのツールは充実していますが,これらを改良したり,自分の問題のために書き換えるのは,一筋縄ではいきません. 本書では,コンピュータビジョン,とくに画像からの3次元解析の代表的な手法について,それらの計算手順(アルゴリズム)を詳細に解説することで,こうした問題を解決するヒントを提供します. 〈本書の特徴〉 ・「計算手順」→「解説」という順序で解説 →理論の詳細を追わなくても学べる. ・アルゴリズムの適用例を示し,それぞれの精度と処理速度を評価 →高精度・高速な処理を行うために,アルゴリズムの何をどのように工夫すればよいかがわかる. ・この分野の第一人者である著者らが,各手法について,歴史的概観を交えて参考文献を紹介 →今後の学習の指針,分野の概観が得られる. なお,実装を容易にするために,代表的な手順のサンプルコードと,行列・ベクトル演算ライブラリEigenの解説を森北出版のWeb サイトで公開しています. 第1章 序 論 第I部 コンピュータビジョンの基礎技術 第2章 楕円当てはめ 第3章 基礎行列の計算 第4章 三角測量 第5章 2画像からの3次元復元 第6章 射影変換の計算 第7章 平面三角測量 第8章 平面の3次元復元 第9章 楕円の解析と円の3次元計算 第II部 多画像からの3次元復元 第10章 多視点三角測量 第11章 バンドル調整 第12章 アフィンカメラの自己校正 第13章 透視投影カメラの自己校正

みんなのレビュー
まだレビューはありません
No.83
61
みんなのレビュー
まだレビューはありません
No.84
61
みんなのレビュー
まだレビューはありません
No.85
61
みんなのレビュー
まだレビューはありません
No.89
61
みんなのレビュー
ベイズを深く学びたいならこの書籍は外せない。ただかなり難解なので最初からこれに取り組むと挫折する。
No.92
61
みんなのレビュー
まだレビューはありません
No.93
61

注目のコンピュータービジョンライブラリ。高度な映像処理、解析がPythonでさらに簡単に! 第1章 OpenCVについて(OpenCVとは OpenCVの機能と構成 ほか) 第2章 画像・映像入出力(画像ファイルの表示 画像ファイルの処理と保存 ほか) 第3章 映像処理(カラーチャンネルの分離と合成 移動物体の抽出(浮動小数点数型画像) ほか) 第4章 基本操作(テキストとグラフィックスの描画 ピクセルの直接操作(映像処理) ほか) 第5章 映像解析(テンプレートマッチング オプティカルフロー検出 ほか) 付録

みんなのレビュー
まだレビューはありません
No.96
61
みんなのレビュー
まだレビューはありません
No.97
61
みんなのレビュー
まだレビューはありません
No.99
61
みんなのレビュー
まだレビューはありません
No.102
61

自然言語処理編

みんなのレビュー
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
No.103
61

ディープラーニングを活用した各社の様々な事例やサービスをまとめた、まさに次世代の産業界の指標となる1冊です。 自動化や効率化が進むこれからの時代にますます注目を集めているディープラーニング。 本書では、ディープラーニングを活用した様々な事例やディープラーニングを用いたサービスを 提供する企業の取り組みをまとめた、まさに次世代の産業界の指標となる1冊です。 【序論】 ・ディープラーニングとはなにか?  日本大学 生産工学部/杉沼浩司 ほか ・深層学習がもたらした画像認識技術の飛躍的向上  株式会社センスタイムジャパン ・ディープラーニングへの取り組み  ~異常検知エンジン「gLupe」の紹介~  株式会社システム計画研究所/久野祐輔 ・従来の概念を変えるディープラーニングを  用いた画像解析ソフトウェア「SuaKIT」  株式会社アプロリンク/塚田大和 ・Deep Learning を活用した  外観検査システム「WiseImaging」  株式会社シーイーシー/久保田進也 【特別インタビュー】 ・“データを価値に変える"  人工知能でビジネスをサポートするブレインパッドの取り組み  株式会社ブレインパッド ・産業用画像処理におけるディープラーニングの真価  ─ HALCON が提供する機械学習機能とディープラーニング活用機能 ─  株式会社リンクス/島 輝行 ・トンネル切羽 AI 自動評価システム ̶ Deep Learning 活用による取り組み̶  日本システムウエア株式会社/野村貴律  株式会社 安藤・間/宇津木慎司 ・エッジコンピューティング向け組込み特化の  ディープラーニングフレームワーク「KAIBER」の活用法  ディープインサイト株式会社/久保田良則 【画像センシング展̶特別招待講演より】 ・画像診断におけるAI 活用推進について  東京慈恵会医科大学 放射線医学講座/准教授 中田典生 ・個体差がある物体でも瞬時に識別  画像識別技術「AI-Scan」  株式会社ブレイン/多鹿一良 ・人間の感覚をもった画像検査システム  「Deep Inspection」  株式会社 Rist/遠野宏季 ・画像認識および Deep Learning 開発サービス  「TrustSense」  株式会社トラスト・テクノロジー/山本隆一郎 ■製品紹介 ●株式会社スカイロジック ●丸紅無線通信株式会社 ●アースアイズ株式会社 ●HPCシステムズ株式会社 ●株式会社エンルートラボ ●キヤノン IT ソリューションズ株式会社 ●クリスタルメソッド株式会社 ●コグネックス株式会社 ●株式会社システムズナカシマ ●株式会社タイテック ●ビットブリッジ株式会社 ●株式会社マイクロテクニカ ●株式会社ミラック光学

みんなのレビュー
まだレビューはありません
No.104
61
みんなのレビュー
まだレビューはありません
No.105
61

ラズパイを使ってさまざまな機械学習の演習を行い、体験を重ねながら理解する入門書。専門知識がなくても読み通せます。 ラズパイを使ってさまざまな機械学習の演習を行い、体験を重ねながら理解する入門書。専門知識がなくても読み通せます。 第1章 機械学習と人工知能、ニューラルネットワークとの関係 第2章 機械学習入門 第3章 Raspberry Piで機械学習を体験するための準備(※) 第4章 サポートベクトルマシンによるアヤメの分類 第5章 多層ニューラルネットワークによるアヤメの分類 第6章 手書き数字の分類 第7章 コンピュータとじゃんけん勝負をしよう 第8章 画像処理でグー・チョキ・パーを読み取ろう 第9章 じゃんけんシステムの完成 第10章 ディープラーニング ※Raspberry Pi用OSのインストールと環境設定の解説は、本書のサポートページに掲載されます。 【付録A】matplotlibを用いたプログラムの解説 【付録B】OpenCVを用いたプログラムの解説 【付録C】自分の手の画像を学習用データとする方法 (注:【付録】はサポートページにてPDF形式で配布します。電子版では、末尾に収録されます)

みんなのレビュー
まだレビューはありません
No.106
61
みんなのレビュー
まだレビューはありません
No.110
61

科学の技法 第2版: 東京大学「初年次ゼミナール理科」テキスト

東京大学教養教育高度化機構Educational Transformation部門
東京大学出版会

自ら問いを発見し、解決する――科学の現場だけではなく、実際の社会においても求められる基礎的なスキルを身につけ、アカデミックの世界を体験してみよう。アクティブラーニングの実践例も紹介。東京大学の必修講義「初年次ゼミナール理科」の好評テキストの改訂版。 はじめに 基礎編 サイエンティフィック・スキルを身につける 特別編 初年次ゼミナール理科の授業を受けるにあたって知ってほしいこと(若杉桂輔) 1.アカデミックな知の現場へ――大学での学びとは 2.研究のプロセス 3.研究倫理 4.学術論文の種類と構成 5.文献検索 6.文献の引用 7.レポート 8.ピアレビュー 9.グループワーク 10.プレゼンテーション 実践編 実録! 初年次ゼミナール理科 1.老化のメカニズムに迫る――アンチエイジングは可能か?(江頭正人) 2.建築の可能性(川添善行) 3.体験的ものづくり学――3Dプリンタによるコマづくり(三村秀和ほか) 4.機械学習入門(杉山 将・佐藤一誠) 5.数学・物理をプログラミングで考える(田浦健次朗) 6.知能ロボット入門(鳴海拓志・中嶋浩平) 7.私たちの身近にあるタンパク質を科学する(片岡直行ほか) 8.身近な物理でサイエンス(松本 悠) 9.薬学における生物学の役割と貢献(中嶋悠一朗ほか) 10.分子の形を知り,物質をデザインする(宮島 謙) 11. モーションコントロール入門――ロボットや車両を上手に動かす科学(古関隆章) 12.駒場キャンパスやその周辺のまちを歩き、その空間について考える(中島直人・廣井 悠) 13.電子回路で学ぶモデリング手法(三田吉郎) 14.工学×デザイン――ワークショップで学ぶ理系のためのデザイン(村上 存・泉 聡志) 研究の世界へ 研究におけるセレンディピティ的発見の紹介(若杉桂輔) 講義一覧 あとがき 図の出典

みんなのレビュー
まだレビューはありません
No.111
61
みんなのレビュー
まだレビューはありません
No.114
61
みんなのレビュー
まだレビューはありません
No.116
61

実践 コンピュータビジョン

Jan Erik Solem
オライリージャパン
みんなのレビュー
まだレビューはありません
No.117
61

プログラミングは一切行わず、医用画像に人工知能を導入するための解説書。 プログラミングは一切行わず、医用画像に人工知能を導入するための解説書。 Neural Network Console(ソニー社)と、DIGITS(NVIDIA社)を使って、深層学習と医用画像処理を行う手順とノウハウを詳しく解説。

みんなのレビュー
まだレビューはありません
No.118
61
みんなのレビュー
デザインの基本原則をシンプルかつ実践的に解説する一冊です。デザインの経験がない人でもすぐに活用できる具体的なアドバイスが豊富に含まれており、特にレイアウトやフォントの使い方については実用的な例が満載です。デザイン初心者がプロのようなレイアウトを作り出すためのヒントが詰まっており、初心者から中級者まで幅広い層に役立つ内容です。
No.120
61

医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめた。

みんなのレビュー
まだレビューはありません
No.123
61
みんなのレビュー
まだレビューはありません
No.124
61
みんなのレビュー
まだレビューはありません
search