【2024年】「画像認識」のおすすめ 本 138選!人気ランキング
- 今すぐ試したい! 機械学習・深層学習(ディープラーニング) 画像認識プログラミングレシピ
- 詳解 OpenCV 3 ―コンピュータビジョンライブラリを使った画像処理・認識
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- Pythonで始めるOpenCV 4プログラミング
- 画像認識 (機械学習プロフェッショナルシリーズ)
- 入門 Python 3 第2版
- 増補改訂版 図解でわかる はじめてのデジタル画像処理
- 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
- 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
- OpenCV4基本プログラミング: さらに進化した画像処理ライブラリの定番
本書は、日常生活で広く使われる人工知能(AI)に焦点を当て、特に機械学習と深層学習の基礎を解説した入門書です。数式を使わずに図や写真を多用して、必要な概念や用語を網羅的に説明します。内容は、Pythonや主要なツール・ライブラリ(TensorFlow、PyTorchなど)の基本、実践的なレシピ、Pythonによるウェブサーバの構築に関する章で構成されています。
この書籍は、ディープラーニングをゼロから実装することで学ぶ入門書です。Python 3を用いて、基礎から誤差逆伝播法や畳み込みニューラルネットワークなどの実装を通じて理解を深めます。また、ハイパーパラメータの設定やBatch Normalization、Dropout、Adamなどの最新技術、さらには自動運転や画像生成などの応用例についても触れています。著者は斎藤康毅氏で、コンピュータビジョンや機械学習の研究開発に従事しています。
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
本書は、プログラミング初級者向けのPython入門書で、ベストセラー『入門 Python 3』の6年ぶりの改訂版です。Pythonの基礎から応用までをわかりやすく説明し、Python 3.9に対応した新機能も追加されています。内容は基礎、実践、付録に分かれており、リファレンスとしても利用可能です。
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
本書は、ニューラルネットワークの理論とディープラーニングの実装を解説した入門書で、PythonやKeras、TensorFlow、PyTorchを使用しています。特に自然言語処理や時系列データ処理に焦点を当て、新しい手法やモデルを詳しく説明しています。内容は、数学の基礎から始まり、ニューラルネットワーク、ディープニューラルネットワーク、リカレントニューラルネットワーク(RNN)とその応用までを網羅しています。著者は巣籠悠輔で、実務経験を持つ専門家です。
この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。
本書は、機械学習を実践的に学ぶための教材で、scikit-learn、TensorFlow、Kerasを用いて、基礎から応用までの手法を体系的に解説しています。内容には、データ処理、モデル学習、深層学習、強化学習、コンピュータビジョン、自然言語処理などが含まれ、サンプルコードはすべてGitHubで公開され、Jupyter Notebookで試すことができます。第2版では新たに畳み込みニューラルネットワークやGANによる画像生成の説明も追加されています。機械学習を学びたいエンジニアにとって必携の一冊です。
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
この入門書は、パターン認識について基礎からわかりやすく解説しており、特にRを用いた実行例が含まれているため、実際の応用にも役立ちます。内容は識別規則や学習法、ベイズの識別規則、k最近傍法、サポートベクトルマシンなど多岐にわたり、最後には識別器の性能強化についても触れています。著者は筑波大学の名誉教授、平井有三氏です。
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。
本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーやグラフニューラルネットワーク、生成モデルなどの手法を詳しく解説しています。著者は、理論的な証明がなくても納得できる説明を重視し、実用性を考慮した内容を提供。全12章で、基本構造から各種学習方法、データが少ない場合の対策まで幅広く網羅しています。著者は東北大学の教授であり、実務家との共同研究の経験も反映されています。
本書は、プログラミング言語Python 3.6の入門書で、538本のサンプルコードと154本のPythonファイルを通じて基礎から機械学習まで学べる内容です。3つのパートに分かれており、Part 1ではPythonの環境設定、Part 2では基本的な構文やデータ構造、Part 3では科学計算や機械学習の応用を解説しています。初心者から実践者まで、確実なスキルアップを目指すことができます。著者はコンピュータ専門誌への寄稿や教材開発を行っている大重美幸氏です。
この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
画像認識について初めて学ぶ人でも全体像が把握できるよう、ポイントをまとめて解説する。 画像認識について初めて学ぶ人でも全体像が把握できるよう、データの基礎的な知識や撮影方法から具体的な画像処理手法、さらに画像認識の進化に欠かせない機械学習や深層学習と画像認識の関係なども含め、ポイントをまとめて解説する。
本書は、ディープラーニングの実用化に向けた最新の動向と事例を紹介するもので、国内35社の具体例を通じてその活用方法や課題を解説しています。東京大学の松尾豊氏による技術的発展のロードマップを基に、業務効率化や新規事業創出に役立つ情報を提供。各章では、単純作業の自動化から異常検知、ロボットや自動運転技術、さらには創作業務への応用まで幅広くカバーしています。また、ビジネス活用に関するQ&Aも含まれ、企業の導入に役立つ内容となっています。
本書は、日本ディープラーニング協会が監修し、ディープラーニングをビジネスに活用するための実践的な知識と事例を紹介しています。特に「ディープラーニングビジネス活用アワード」の受賞プロジェクト6件を詳細にケーススタディとして取り上げています。事例には、キユーピーのAI食品原料検査装置や楽天の自動翻訳プロジェクトなどが含まれ、効果を4つのカテゴリ(商品開発、消費者対応、働き方改革、社会課題解決)に分けて説明しています。また、松尾豊理事長による「ディープラーニング技術年表」も収録されており、技術的なアドバイスが提供されています。
生成型ディープラーニングの解説。人間にしかできないと思われていた創造的な作業を機械に行わせる技術の基礎から応用までを学ぶ。 生成型ディープラーニングの基礎から応用までを網羅! 生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。第I部は基礎編です。機械学習プログラミング、変分オートエンコーダ、GANやVAEなど、生成モデルの作成において重要な基礎技術を学びます。第II部は応用編です。CycleGAN、エンコーダ―デコーダモデル、MuseGANなどのモデルを作成し、作画、作文、作曲といった創造的なタスクに取り組みます。さらには、実環境を用いずにゲームプレイAIの学習を可能にする、世界モデルを使った強化学習にも取り組みます。最後に生成モデリングの未来として、StyleGAN、BigGAN、BERT、GPT-2、MuseNetなどのアーキテクチャを紹介します。
本書は、金融、流通、製造、インフラなど8業界36業種におけるAI導入事例を解説し、活用分野や親和性について鳥瞰図で示しています。豊富な実例を通じてビジネスアイデアの創出を促し、実装やトライアルのノウハウも提供。各業種ごとに具体的な解説があり、AIの実用性や将来可能性を探る手助けとなります。購入者特典として鳥瞰図のダウンロードも可能です。著者はAIとデータ分析の専門家で、実績豊富です。
本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。
本書は、人工知能(AI)を学びたい初心者向けの入門書であり、特にエンジニアでない中高生や文系の大学生、ビジネスパーソンに向けて分かりやすくAIの基礎知識とビジネス活用法を解説しています。著者は人気講師で、初心者にも理解しやすい内容に配慮しています。書籍は3部構成で、基礎編ではAIの基本を、ビジネス編では業界別の活用事例と注意点、技術編ではAIの仕組みと最新技術を紹介しています。これにより、AIの本質や活用方法についての理解を深めることができます。
初心者がプログラミングを学びやすい構成が魅力。Pythonの基本的な文法から実際にコードを書く過程まで、わかりやすい解説でスムーズに学べます。豊富な例題や演習が用意されているため、しっかりと理解を深めながら進めることができ、実践的なスキルが身につく点がポイントです。初めてPythonに触れる人でも安心して学べます。
この書籍は、データサイエンスにおける統計学と機械学習の52の基本概念を簡潔に説明し、必要な数式やグラフ、RとPythonのコードを提供します。データの分類、分析、モデル化、予測において、統計学の重要な要素を明確にし、効率的に学ぶことができます。改訂版ではPythonにも対応し、コードはGitHubからダウンロード可能です。著者はデータサイエンスの専門家であり、幅広い経験を持っています。
著者松尾豊は、日本の人工知能研究の第一人者として、最新技術「ディープラーニング」の進展とその影響を探求し、知能や人間の本質について問い直します。本書では、人工知能の歴史やブームを振り返りながら、技術の進化が人類にもたらす可能性と危機について論じています。
この書籍は、AIを活用した様々な応用例を紹介しており、機械学習やディープラーニングの基礎、画像・動画処理、自然言語処理、業務効率化の方法などを学ぶことができます。また、マスク着用の判定など新しい生活様式に対応したサンプルも収録されています。著者はプログラミングや機械学習に関する多くの書籍を執筆しているクジラ飛行机氏をはじめ、専門家たちです。
本書は、プログラミング初心者向けにリニューアルされた「いちばんやさしいPythonの本」で、最新のPython 3に完全対応しています。イラストやサンプルが豊富で、オブジェクト指向やWebアプリ開発、データ処理の基本も学べます。新たに2章が追加され、プログラミングの楽しさと効率化の重要性を伝え、読者がスキルを身につける手助けをします。著者は東京大学の辻真吾氏で、Pythonの普及活動にも力を入れています。
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
本書は、AI社会における職業の不安を解消し、文系の人がAIを活用してキャリアアップするための実践トレーニング本です。専門用語を最小限に抑え、多様な業種別事例を通じてAIとの共働きスキルを身につける方法を紹介しています。内容は、AI社会での職の保持、文系向けのAIキャリア、AIの基本理解、企画力の向上、業種別事例の紹介などを含んでおり、特に文系のAI人材が社会に与える影響に焦点を当てています。著者はAIビジネスの推進に取り組む専門家です。
コンピュータビジョンの代表的な計算手順(アルゴリズム)について,詳細に解説. OpenCVやWeb上のプログラムなど,コンピュータビジョンを行ううえでのツールは充実していますが,これらを改良したり,自分の問題のために書き換えるのは,一筋縄ではいきません. 本書では,コンピュータビジョン,とくに画像からの3次元解析の代表的な手法について,それらの計算手順(アルゴリズム)を詳細に解説することで,こうした問題を解決するヒントを提供します. 〈本書の特徴〉 ・「計算手順」→「解説」という順序で解説 →理論の詳細を追わなくても学べる. ・アルゴリズムの適用例を示し,それぞれの精度と処理速度を評価 →高精度・高速な処理を行うために,アルゴリズムの何をどのように工夫すればよいかがわかる. ・この分野の第一人者である著者らが,各手法について,歴史的概観を交えて参考文献を紹介 →今後の学習の指針,分野の概観が得られる. なお,実装を容易にするために,代表的な手順のサンプルコードと,行列・ベクトル演算ライブラリEigenの解説を森北出版のWeb サイトで公開しています. 第1章 序 論 第I部 コンピュータビジョンの基礎技術 第2章 楕円当てはめ 第3章 基礎行列の計算 第4章 三角測量 第5章 2画像からの3次元復元 第6章 射影変換の計算 第7章 平面三角測量 第8章 平面の3次元復元 第9章 楕円の解析と円の3次元計算 第II部 多画像からの3次元復元 第10章 多視点三角測量 第11章 バンドル調整 第12章 アフィンカメラの自己校正 第13章 透視投影カメラの自己校正
本書は、ビジネス書グランプリや大賞を受賞した著者による現代の変化を分析し、AIとデータの発展がもたらす影響について論じています。読者は、社会の変化、企業の戦略、教育のあり方など多岐にわたる問いに対する答えを見つけることができます。著者は、建設的な未来の創造を目指し、ファクトベースでの現状分析を行い、ビジネス、教育、政策などの領域における具体的なアプローチを提案しています。
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
注目のコンピュータービジョンライブラリ。高度な映像処理、解析がPythonでさらに簡単に! 第1章 OpenCVについて(OpenCVとは OpenCVの機能と構成 ほか) 第2章 画像・映像入出力(画像ファイルの表示 画像ファイルの処理と保存 ほか) 第3章 映像処理(カラーチャンネルの分離と合成 移動物体の抽出(浮動小数点数型画像) ほか) 第4章 基本操作(テキストとグラフィックスの描画 ピクセルの直接操作(映像処理) ほか) 第5章 映像解析(テンプレートマッチング オプティカルフロー検出 ほか) 付録
この書籍は、人工知能(AI)と人間の共存について考察し、知性の認識や人間の生き方を探る内容です。三部構成で、第一部ではAIの歴史やディープラーニングの進展を解説。第二部ではAIが世界の見方に与える影響を論じ、第三部ではAIと人間社会の関係や自由主義の課題について考察します。著者はそれぞれ異なる専門分野から、AIの進展がもたらす新しい時代の教養について議論します。
自然言語処理編
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on: fast transforms; parallel LU; discrete Poisson solvers; pseudospectra; structured linear equation problems; structured eigenvalue problems; large-scale SVD methods; and, polynomial eigenvalue problems. Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature-everything needed to become a matrix-savvy developer of numerical methods and software.
ディープラーニングを活用した各社の様々な事例やサービスをまとめた、まさに次世代の産業界の指標となる1冊です。 自動化や効率化が進むこれからの時代にますます注目を集めているディープラーニング。 本書では、ディープラーニングを活用した様々な事例やディープラーニングを用いたサービスを 提供する企業の取り組みをまとめた、まさに次世代の産業界の指標となる1冊です。 【序論】 ・ディープラーニングとはなにか? 日本大学 生産工学部/杉沼浩司 ほか ・深層学習がもたらした画像認識技術の飛躍的向上 株式会社センスタイムジャパン ・ディープラーニングへの取り組み ~異常検知エンジン「gLupe」の紹介~ 株式会社システム計画研究所/久野祐輔 ・従来の概念を変えるディープラーニングを 用いた画像解析ソフトウェア「SuaKIT」 株式会社アプロリンク/塚田大和 ・Deep Learning を活用した 外観検査システム「WiseImaging」 株式会社シーイーシー/久保田進也 【特別インタビュー】 ・“データを価値に変える" 人工知能でビジネスをサポートするブレインパッドの取り組み 株式会社ブレインパッド ・産業用画像処理におけるディープラーニングの真価 ─ HALCON が提供する機械学習機能とディープラーニング活用機能 ─ 株式会社リンクス/島 輝行 ・トンネル切羽 AI 自動評価システム ̶ Deep Learning 活用による取り組み̶ 日本システムウエア株式会社/野村貴律 株式会社 安藤・間/宇津木慎司 ・エッジコンピューティング向け組込み特化の ディープラーニングフレームワーク「KAIBER」の活用法 ディープインサイト株式会社/久保田良則 【画像センシング展̶特別招待講演より】 ・画像診断におけるAI 活用推進について 東京慈恵会医科大学 放射線医学講座/准教授 中田典生 ・個体差がある物体でも瞬時に識別 画像識別技術「AI-Scan」 株式会社ブレイン/多鹿一良 ・人間の感覚をもった画像検査システム 「Deep Inspection」 株式会社 Rist/遠野宏季 ・画像認識および Deep Learning 開発サービス 「TrustSense」 株式会社トラスト・テクノロジー/山本隆一郎 ■製品紹介 ●株式会社スカイロジック ●丸紅無線通信株式会社 ●アースアイズ株式会社 ●HPCシステムズ株式会社 ●株式会社エンルートラボ ●キヤノン IT ソリューションズ株式会社 ●クリスタルメソッド株式会社 ●コグネックス株式会社 ●株式会社システムズナカシマ ●株式会社タイテック ●ビットブリッジ株式会社 ●株式会社マイクロテクニカ ●株式会社ミラック光学
ラズパイを使ってさまざまな機械学習の演習を行い、体験を重ねながら理解する入門書。専門知識がなくても読み通せます。 ラズパイを使ってさまざまな機械学習の演習を行い、体験を重ねながら理解する入門書。専門知識がなくても読み通せます。 第1章 機械学習と人工知能、ニューラルネットワークとの関係 第2章 機械学習入門 第3章 Raspberry Piで機械学習を体験するための準備(※) 第4章 サポートベクトルマシンによるアヤメの分類 第5章 多層ニューラルネットワークによるアヤメの分類 第6章 手書き数字の分類 第7章 コンピュータとじゃんけん勝負をしよう 第8章 画像処理でグー・チョキ・パーを読み取ろう 第9章 じゃんけんシステムの完成 第10章 ディープラーニング ※Raspberry Pi用OSのインストールと環境設定の解説は、本書のサポートページに掲載されます。 【付録A】matplotlibを用いたプログラムの解説 【付録B】OpenCVを用いたプログラムの解説 【付録C】自分の手の画像を学習用データとする方法 (注:【付録】はサポートページにてPDF形式で配布します。電子版では、末尾に収録されます)
自ら問いを発見し、解決する――科学の現場だけではなく、実際の社会においても求められる基礎的なスキルを身につけ、アカデミックの世界を体験してみよう。アクティブラーニングの実践例も紹介。東京大学の必修講義「初年次ゼミナール理科」の好評テキストの改訂版。 はじめに 基礎編 サイエンティフィック・スキルを身につける 特別編 初年次ゼミナール理科の授業を受けるにあたって知ってほしいこと(若杉桂輔) 1.アカデミックな知の現場へ――大学での学びとは 2.研究のプロセス 3.研究倫理 4.学術論文の種類と構成 5.文献検索 6.文献の引用 7.レポート 8.ピアレビュー 9.グループワーク 10.プレゼンテーション 実践編 実録! 初年次ゼミナール理科 1.老化のメカニズムに迫る――アンチエイジングは可能か?(江頭正人) 2.建築の可能性(川添善行) 3.体験的ものづくり学――3Dプリンタによるコマづくり(三村秀和ほか) 4.機械学習入門(杉山 将・佐藤一誠) 5.数学・物理をプログラミングで考える(田浦健次朗) 6.知能ロボット入門(鳴海拓志・中嶋浩平) 7.私たちの身近にあるタンパク質を科学する(片岡直行ほか) 8.身近な物理でサイエンス(松本 悠) 9.薬学における生物学の役割と貢献(中嶋悠一朗ほか) 10.分子の形を知り,物質をデザインする(宮島 謙) 11. モーションコントロール入門――ロボットや車両を上手に動かす科学(古関隆章) 12.駒場キャンパスやその周辺のまちを歩き、その空間について考える(中島直人・廣井 悠) 13.電子回路で学ぶモデリング手法(三田吉郎) 14.工学×デザイン――ワークショップで学ぶ理系のためのデザイン(村上 存・泉 聡志) 研究の世界へ 研究におけるセレンディピティ的発見の紹介(若杉桂輔) 講義一覧 あとがき 図の出典
プログラミングは一切行わず、医用画像に人工知能を導入するための解説書。 プログラミングは一切行わず、医用画像に人工知能を導入するための解説書。 Neural Network Console(ソニー社)と、DIGITS(NVIDIA社)を使って、深層学習と医用画像処理を行う手順とノウハウを詳しく解説。
この書籍は、人工知能プログラミングに必要な数学を基礎から優しく学べる参考書です。著者は「10秒で始める人工知能プログラミング学習サービス」の代表者で、数学に苦手意識がある人でも理解できる内容になっています。基本的な数学から微分、線形代数、確率・統計を学び、実践編では住宅価格の推定や自然言語処理、手書き数字認識などの具体的な例を通じて理解を深めます。対象読者は、AIアルゴリズムを学びたいが数学に不安がある人々です。
本書は、ディープラーニングの理解に必要な数学を高校1年生レベルからやさしく解説し、最短コースで学べる内容です。微分、ベクトル、行列、確率などの必要最低限の数学を特製のマップで整理し、実際に動かせるコードをJupyter Notebook形式で提供します。内容は機械学習入門から始まり、理論編、実践編、発展編に分かれており、ディープラーニングの動作原理を深く理解できることを目指しています。
医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめた。