【2024年】「データ分析」のおすすめ 本 140選!人気ランキング
- AI・データ分析プロジェクトのすべて[ビジネス力×技術力=価値創出]
- Kaggleで勝つデータ分析の技術
- 図解ポケット 今日から使える! データサイエンスがよくわかる本
- 前処理大全[データ分析のためのSQL/R/Python実践テクニック]
- 統計学入門 (基礎統計学Ⅰ)
- はじめてのパターン認識
- 欠測データ処理: Rによる単一代入法と多重代入法 (統計学One Point 5)
- Python実践データ分析100本ノック
- データ分析のための数理モデル入門 本質をとらえた分析のために
- これなら分かる最適化数学: 基礎原理から計算手法まで
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
例題を試しながら地理空間データ分析の基本を学べる!数字だけの分析ではなく、地理空間を組み合わせることで、より立体的で精度の高い予測、分析ができるため、注目を集める地理空間データ分析をPythonで行うための入門書です。既存の公開データ、Jupyter Notebookで提供されているサンプルコード、QGISというオープンソースのGISソフトを使い、手軽に試して結果を出力してみることができます。空間データ分析において重要ながらも見過ごされがちな、正確なマップをデザインするコツ、非定型データ型の処理のテクニックなどもフォローしています。
新しいデータシステム「データレイク」をAWS(Amazon Web Services)で構築する方法を、クラウドのプロが充… 従来のデータベースを発展させた、クラウド時代のデータシステム「データレイク」をAWS(Amazon Web Services)上で実現するための指南書。クラウドのプロによる解説で概念と実践を充実解説。 「データレイク」は、大量データ分析/生成データの活用を視野に入れた新しいデータストアのかたちです。従来のデータベース/データウェアハウスの範囲に収まらない多様なデータを大量に保管し、高度な統計分析や機械学習に役立つ情報基盤を作ることが可能です。 本書ではデータレイクの概念や特徴、必要とされる機能などを基本から解説し、さらにAmazonが運営するパブリッククラウドサービスAWS(Amazon Web Services)で実現する方法を解説します。 従来では想定しえなかった大量のデータを確実に保管するため、データレイクの世界ではクラウドのようなサービス型インフラストラクチャの活用が注目されます。さらにAWSではオブジェクトストレージS3上のデータを直接分析するAmazon Athena、データウェアハウスのAmazon Redshift、機械学習を実現するAmazon SageMakerなど、データレイクを支えるさまざまな仕組みが存在します。 本書ではそれらの活用の指針を解説するとともに、後半ではシステムの構築例を具体的に解説していきます。ビジネスデータ分析とログなどの生成データ分析を例に、システム構築の流れを詳しく紹介し、機械学習や統計分析をビジネスの現場で活かせる仕組みの技術的なヒントを数多く提供します。 第1部 データレイクの概念と知識 序章 データレイ クを始めよう 第1章 データレイクの構築 第2章 データレイクの活用 第3章 データレイクの運用 第4章 データレイクのセキュリティ 第2部 データレイクの実践(基礎編) 第5章 ハンズオンの概要 ービジネスデータのデータレイクー 第6章 データを可視化する 第7章 サーバーレスSQLによるデータ分析 第8章 データを変換する 第9章 データを分析する(データウェアハウス) 第3部 データレイクの実践(応用編) 第10章 システムの概要 ーログデータのデータレイクー 第11章 ログを集める 第12章 ログの保管とカタログ化 第13章 ログを加工する 第14章 ログを分析する
ビジネスや意思決定の場面で,データを活用したい方に手にとっていただきたいデータサイエンスの入門書。目的別の分析手法を幅広く… ビジネスや意思決定の場面で,データを活用したい方に向けたデータサイエンスの入門書。データの種類ごとの性質や収集時の注意点,目的別の分析手法からデータ可視化まで幅広く扱う。各章末には課題を設置し,最終章ではデータサイエンスの展望や限界についても言及。 第1章 データサイエンスとは 第2章 データ収集のための基礎知識 第3章 データ空間の構成法 第4章 データ生成のメカニズム 第5章 データの可視化手法 第6章 データ分析の手法 第7章 データ活用のフレームワーク 第8章 データの分析事例 第9章 データ分析上の注意点と応用知識
フリーソフトjs-STAR_XRが拡張され,ベイズ仮説検定にも新たに対応。データ分析から結果の書き方まで懇切にガイド。 「できる」から「わかる」へと読者の理解を体験的に導く,好評〈全自動〉シリーズ第2弾! フリーソフトjs-STAR_XRが拡張され,帰無仮説検定の代替案として近年関心が高まるベイズ仮説検定に新たに対応。巻末には半期や全7回の授業用シラバスを収載。データ分析からレポートの書き方まで,前著同様懇切にガイドする。 はじめに1:ベイズファクタと統計分析の学習法 はじめに2:シミュレーションによる主体的で深い学び Chapter0 事前準備 0.1 フリーウェア及び関連ファイルの準備 0.2 R画面の設定 Chapter1 1×2表のベイズファクタ分析 【演習1a】 みんなが好きなもの 1.1 データ入力・分析 1.2 『結果の書き方』 レポート例01-1 1.3 統計的概念・手法の解説1 ●ベイズファクタとは何か ●確率分布の尺度設定 ●95%確信区間推定 ●真の比率の範囲検定 【演習1b】 統計的仮説検定のシミュレーション 1.4 シミュレーションの操作手順 ●シミュレーションの基本操作 ●シミュレーションの応用操作 1.5 統計的概念・手法の解説2 ●ベイズファクタ分析のメリット ●二項検定のp値とBF値の比較 Chapter2 1×2表・母比率不等のベイズファクタ分析 【演習2a】 鶏肉は低温調理がおいしい 2.1 シミュレーションの操作手順 2.2 統計的概念・手法の解説1 ●p値とBF値の検定の仕組み 【演習2b】 新型ウイルスは従来型よりも危険か 2.3 データ入力・分析 2.4 『結果の書き方』 レポート例02-1 2.5 統計的概念・手法の解説2 ●ベイズファクタの事前設定問題 Chapter3 1×J表のベイズファクタ分析と対応のある度数の検定 【演習3a】 お昼に食べたいメニューは何か 3.1 データ入力・分析 3.2 『結果の書き方』 レポート例03-1 3.3 統計的概念・手法の解説1 ●多項分布によるBF値の計算 ●確信区間を用いた多重比較 3.4 自動評価判定1×2:統計的グレード付与 【演習3b】 道徳性に評価グレードを与える 3.5 純肯定率とグレードの付け方 3.6 自動集計検定2×2:連関の探索 【演習3c】 道徳性の項目間の関連を探索する 3.7 対応のある度数の検定:Q検定とMcNemar検定 【演習3d】 不支持の理由は集計するとダメ? レポート例03-2 3.7 統計的概念・手法の解説2 ●CochranのQ検定 ●McNemar検定 Chapter4 i×J表のベイズファクタ分析 【演習4a】 感受性が低い人は感情知能が働かない? 4.1 データ入力・分析 4.2 『結果の書き方』 4.3 標本タイプの選択 ●ポアソンタイプ:N =無作為,行・列=無作為 ●同時多項タイプ:N =固定,行・列=無作為 ●独立多項タイプ:行=固定,列=無作為 ●独立多項タイプの列組み:行=無作為,列=固定 ●超幾何タイプ:行・列=固定(2×2表のみ) レポート例04-1 4.4 統計的概念・手法の解説1 ●i×J表の事前確率分布 4.5 データセットraceDollsの分析:BF値の警報は誤報か 【演習4b】 黒人・白人の子どもは同人種の人形を好むか レポート例04-2 4.6 統計的概念・手法の解説2 ●Fisherの正確検定とBF値の検定 ●2×2表のp値とBF値の比較 4.7 ステレオタイプ効果と学習意欲 【演習4c】 ステレオタイプ効果で学習時間を延ばす レポート例04-3 Chapter5 t検定のベイズファクタ分析 【演習5a】 トレーニング法は分散法がよいか集中法がよいか 5.1 データ入力・分析 5.2 『結果の書き方』 5.3 統計的概念・手法の解説1 ●t値と効果量δ(delta) ●t検定のベイズファクタ分析の仕組み ●p値とBF値の検定結果の不一致 ●BF値を用いたノンパラメトリック検定 ●t検定のp値とBF値の比較 5.4 シミュレーション学習①:正規分布をつくる 【課題1〉正規分布をつくる 5.5 シミュレーション学習②:データを再現する 【課題2〉データを再現する 5.6 時間データの対数変換による分析 【演習5b】 トレーニングは伸び盛りに! レポート例05-1 5.7 統計的概念・手法の解説2 ●効果量δの範囲検定 Chapter6 1要因分散分析デザインのベイズファクタ分析 【演習6a】 SD法で創造性を高める 6.1 データ入力・分析 6.2 『結果の書き方』 レポート例06-1 6.3 統計的概念・手法の解説1 ●多重比較の早見表の利用 ●ベイズファクタ分析の仕組み:分散分析デザイン ●平均の95%確信区間 ●分散分析A sデザインのp値とBF値の比較 6.4 小学校英語指導に必要な技能は何か 【演習6b】 英語指導にどんな技能が必要か 6.5 『結果の書き方』 レポート例06-2 6.6 統計的概念・手法の解説2 ●参加者内デザインのベイズファクタ分析 Chapter7 2要因・3要因分散分析デザインのベイズファクタ分析 【演習7a】 協同経験はルール意識を高めるか 7.1 データ入力・分析 7.2 『結果の書き方』 レポート例07-1 7.3 統計的概念・手法の解説1 ●Inclusion BF:BF値のモデル平均化 ●全体モデル平均化 7.4 アイディア・プロダクション法 【演習7b】 アイディアの発想に“ 書き送り法”を用いる 7.5 『結果の書き方』 3要因デザイン レポート例07-2 7.6 統計的概念・手法の解説2 ●3要因デザインのBF値の平均化 7.7 シミュレーション学習①:2要因データを再現する 【課題1】 データの再現 7.8 シミュレーション学習②:交互作用を判別する 【課題2】 交互作用の判別 ●シミュレーションによる交互作用問題の解答要領 7.9 シミュレーション学習③:N,SDを変えてみる 【課題3】 N,SDを変える Chapter8 相関係数のベイズファクタ分析 【演習8a】 気温とアイスクリーム,ホットコーヒーの売り上げは相関するか 8.1 データ入力・分析 8.2 『結果の書き方』 8.3 統計的概念・手法の解説1 ●p値有意・BF値有効となる最小相関係数の比較 ●相関係数の差の検定 8.4 相関係数のシミュレーション学習 【演習8b】 シミュレーション課題①:散布図をつくる 【演習8c】 シミュレーション課題②:相関係数を予想する ●散布図問題の解答例 【演習8d】 シミュレーション課題③:外れ値のある散布図をつくる 8.5 統計的概念・手法の解説2 ●相関係数と説明率 Chapter9 回帰モデルのベイズファクタ分析 【演習9a】 革新性を高める職場風土とは? 9.1 データ入力・分析 9.2 『結果の書き方』 9.3 統計的概念・手法の解説1 ●初期モデルの選び方と独立変数の上限数 ●交互作用モデルの探索:ベイズ ファクタ回帰分析 ●BF値による回帰モデルの選出率 9.4 交互作用の単純傾斜分析 【演習9b】 明るさ×温かさの交互作用を分析する 9.5 『結果の書き方』 ステップワイズ回帰分析 レポート例09-1:単純傾斜分析の結果 9.6 統計的概念・手法の解説2 ●交互作用モデルの探索:ステップワイズ回帰分析 ●ベイズ情報量規準とベイズファクタ Chapter10 各種ユーティリティ 10.1 乱数発生ユーティリティ&乱数コマンド ●一様乱数コマンド unif(ユニフ) ●正規乱数コマンド norm(ノゥム) 10.2 階級化集計ユーティリティ 10.3 数値変換ユーティリティ 【練習問題1】 困難度の異なるテスト得点を標準化する 【練習問題2】 2ポイント尺度を4ポイント尺度に変換 【練習問題3】 3ポイント尺度を5ポイント尺度に変換 10.4 逆転項目処理ユーティリティ 10.5 欠損値処理ユーティリティ 付録 統計分析の授業用シラバス(参考例) シラバス参考例1 統計分析入門 シラバス参考例2 統計分析演習 索引 Column 1 セルへの数値入力の基本と小技 Column 2 分析結果の保存 Column 3 ダイアグラムで連関・相関を視覚的に表示 Column 4 スタック形式によるデータ入力 Column 5 平均のグラフとボックスプロットの利用 Column 6 シミュレーションボタンの使い方
Python(パイソン)は初心者が比較的修得しやすく、AI(人工知能)やパターン認識などの先端技術に活用されている優れたプログラミング言語です。 本書では、初心者を対象に、Pythonを使ったプログラミングの勘所をやさしく解説しました。 例題に取り組むことで、プログラミングとはどういうものかを理解し、プログラミング的思考を身につけてもらうことを目的に執筆しました。 読者の皆さんが、楽しみながらPythonの素晴らしさやプログラミングの醍醐味を感じていただけたら、著者として望外の喜びです。
Python業界の第一線で活躍する執筆陣によるデータ分析エンジニアに求められる技術が最速で身に付く入門書 データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 はじめに 謝辞 本書の対象読者と構成について Chapter1 データ分析エンジニアの役割 1.1 データ分析の世界 1.2 機械学習の位置づけと流れ 1.3 データ分析に使う主なパッケージ Chapter2 Pythonと環境 2.1 実行環境構築 2.2 Pythonの基礎 2.3 Jupyter Notebook Chapter3 数学の基礎 3.1 数式を読むための基礎知識 3.2 線形代数 3.3 基礎解析 3.4 確率と統計 Chapter4 ライブラリによる分析の実践 4.1 NumPy 4.2 pandas 4.3 Matplotlib 4.4 scikit-learn Chapter5 応用:データ収集と加工 5.1 スクレイピング 5.2 自然言語の処理 5.3 画像データの処理 INDEX 奥付