【2024年】「機械」のおすすめ 本 132選!人気ランキング
- JISにもとづく 機械設計製図便覧(第13版)
- JISにもとづく機械設計製図便覧(第12版)
- はじめての治具設計
- 材料力学 (JSMEテキストシリーズ)
- 基礎から学ぶ機械工学 キカイを学んでものづくり力を鍛える! (サイエンス・アイ新書)
- トコトンやさしい工作機械の本(第2版) (今日からモノ知りシリーズ)
- 図面の描き方がやさしくわかる本
- 図解入門現場で役立つ機械製図の基本と仕組み (How‐nual Visual Text Book)
- 改訂第3版 図解 もの創りのための やさしい機械工学
- 実用メカニズム事典:機械設計の発想力を鍛える機構101選
本書は、理解しやすいコードを書くための方法を紹介しています。具体的には、名前の付け方やコメントの書き方、制御フローや論理式の単純化、コードの再構成、テストの書き方などについて、楽しいイラストを交えて説明しています。著者はボズウェルとフォシェで、須藤功平氏による日本語版解説も収録されています。
本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。
本書は、ディープラーニングの理解に必要な数学を高校1年生レベルからやさしく解説し、最短コースで学べる内容です。微分、ベクトル、行列、確率などの必要最低限の数学を特製のマップで整理し、実際に動かせるコードをJupyter Notebook形式で提供します。内容は機械学習入門から始まり、理論編、実践編、発展編に分かれており、ディープラーニングの動作原理を深く理解できることを目指しています。
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
本書は、機械学習の発展を背景にした統計的学習に関する教科書「The Elements of Statistical Learning」の全訳です。機械学習は人工知能の一分野から発展し、統計学と密接に関連しています。内容は、教師あり学習の基礎からニューラルネットワークやサポートベクトルマシン、ブースティングなどの高度な手法まで幅広くカバーしており、情報技術を学ぶ大学生や研究者に最適です。著者は各分野の専門家で構成されています。
この書籍は、データ分析における「分析モデル」をテーマにしたもので、回帰分析や深層学習、強化学習などの実践的な分析手法を網羅的に解説しています。著者は、データ分析者がモデルの本質を理解し、データを最大限に活用できるようにすることを目的としています。内容は定型データから非定型データの扱い、強化学習、データから知見を得る方法まで多岐にわたり、各章で具体的な手法や技術が詳しく説明されています。著者は東京大学の博士号を持つデータサイエンティストで、データ分析の啓蒙活動にも従事しています。
本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。
本書は人気シリーズの第3弾で、オリジナルのディープラーニングフレームワーク「DeZero」をゼロから作成する内容です。最小限のコードでモダンな機能を実現し、全60ステップでフレームワークを完成させます。これにより、PyTorchやTensorFlowなどの知識を深めることができます。著者は人工知能の研究開発に従事する斎藤康毅氏です。