【2024年】「パターン認識」のおすすめ 本 100選!人気ランキング
- パターン認識と機械学習 上
- パターン認識と機械学習 下 (ベイズ理論による統計的予測)
- はじめてのパターン認識
- Rによるやさしい統計学
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
- 機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)
- これなら分かる最適化数学: 基礎原理から計算手法まで
- 深層学習 改訂第2版 (機械学習プロフェッショナルシリーズ)
- Kaggleで勝つデータ分析の技術
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
自然言語処理編
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
ビジネスや意思決定の場面で,データを活用したい方に手にとっていただきたいデータサイエンスの入門書。目的別の分析手法を幅広く… ビジネスや意思決定の場面で,データを活用したい方に向けたデータサイエンスの入門書。データの種類ごとの性質や収集時の注意点,目的別の分析手法からデータ可視化まで幅広く扱う。各章末には課題を設置し,最終章ではデータサイエンスの展望や限界についても言及。 第1章 データサイエンスとは 第2章 データ収集のための基礎知識 第3章 データ空間の構成法 第4章 データ生成のメカニズム 第5章 データの可視化手法 第6章 データ分析の手法 第7章 データ活用のフレームワーク 第8章 データの分析事例 第9章 データ分析上の注意点と応用知識
東大教養学部における多年の講義経験に基づいて書き下ろした解析学の本格的入門書.豊富な練習問題をまじえながら,独自の論理構成でていねいに解き明かす.I 実数と連続,微分法,初等函数,積分法,級数 II 陰函数,積分法(続き),ベクトル解析,複素解析 まえがき 読者への注意 第I章 実数と連続 第II章 微分法 第III章 初等函数 第IV章 積分法 第V章 級数 附録1 集合 附録2 論理記号 問題解答
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors-all leaders in the statistics community-introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page. FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.