【2024年】「rnn」のおすすめ 本 124選!人気ランキング
この記事では、「rnn」のおすすめ
本
をランキング形式で紹介していきます。インターネット上の口コミや評判をベースに集計し独自のスコアでランク付けしています。
記事内に商品プロモーションを含む場合があります
目次
- ゼロから作るDeep Learning ❷ ―自然言語処理編
- ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
- scikit-learn、Keras、TensorFlowによる実践機械学習 第2版
- 最短コースでわかる ディープラーニングの数学
- PythonとKerasによるディープラーニング
- Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
- 深層学習 (機械学習プロフェッショナルシリーズ)
- 詳解ディープラーニング 第2版 ~TensorFlow/Keras・PyTorchによる時系列データ処理~ (Compass Booksシリーズ)
- 深層学習教科書 ディープラーニング G検定(ジェネラリスト)公式テキスト 第2版
- 深層学習による自然言語処理 (機械学習プロフェッショナルシリーズ)
他114件
No.1
100
Amazonで詳しく見る
自然言語処理編
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
No.2
95
Amazonで詳しく見る
ディープラーニングの概要は分かっているし機械学習はある程度理解しているつもりだけど、ディープラーニングの中身はちゃんと理解できていない人にぜひ読んで欲しい書籍。ディープラーニングは一旦これ1冊読んでおけば問題なし。複雑で難しい印象だったディープラーニングがこれを読むだけで一気に身近なものになる。
@@SHEQu
No.23
59
Amazonで詳しく見る
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
No.26
59
Amazonで詳しく見る
No.28
59
Amazonで詳しく見る
個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を… 個人の地域密着型アウトドアショップがデジタルマーケティングで業績を飛躍的にアップさせていくストーリーに乗せて、DMの基礎を学ぶ
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
No.30
58
Amazonで詳しく見る
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
No.31
58
Amazonで詳しく見る
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
No.37
58
Amazonで詳しく見る
No.68
55
Amazonで詳しく見る
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
No.75
55
Amazonで詳しく見る
内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊
No.88
54
Amazonで詳しく見る
ビジネスパーソンにAIの書籍を1冊オススメするなら間違いなくこれを選ぶ。データサイエンティスト協会の理事も努めビジネス・アカデミックの両面からデータサイエンスにBETしている安宅さんが語るAIのあり方。我々日本人がこれからの時代において世界でプレゼンスを発揮するためにはどうすればよいかを教えてくれる書籍で非常に感銘を受けた。どんよりとした日本の停滞感に対して少しでも希望を見出すことのできる書籍。安宅さんの書籍はどれも素晴らしいが絶対にこれは読んで欲しい。
No.101
54
Amazonで詳しく見る
強化学習編
強化学習のイメージを掴むのに最適な本です。難しい理論や細かい実装テクニックなどは端折って、"強化学習って何をしているの?"を誤魔化すことなく0から説明しています。取り扱っているトピックの範囲は狭いですが、強化学習の基礎的なトピックに対して深く堅い普遍的な理解が得られます。 著者は他分野でもゼロつくシリーズとして高品質な書籍を量産していますが、こんなに広い分野に対して正しい解釈と体系を構築できることに畏怖の念を抱いてしまいます。
No.119
55
Amazonで詳しく見る
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
No.124
54
Amazonで詳しく見る
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。