【2025年】「scipy」のおすすめ 本 128選!人気ランキング
- Pythonによるデータ分析入門 第2版 ―NumPy、pandasを使ったデータ処理
- Python 1年生 体験してわかる!会話でまなべる!プログラミングのしくみ
- NumPyによるデータ分析入門 ―配列操作、線形代数、機械学習のためのPythonプログラミング
- Pythonデータサイエンスハンドブック ―Jupyter、NumPy、pandas、Matplotlib、scikit-learnを使ったデータ分析、機械学習
- Pythonスタートブック [増補改訂版]
- 入門 Python 3 第2版
- Python実践データ分析100本ノック
- Pythonではじめる機械学習 ―scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎
- みんなのPython 第4版
- NumPy&SciPy数値計算実装ハンドブック (Pythonライブラリ定番セレクション)
初心者向けにプログラミングの基本を会話形式で楽しく学べる本です。プログラムの仕組みがイメージしやすく、キャラクターとのやり取りを通じて、複雑な概念もスムーズに理解できる内容になってます。プログラミングに全く触れたことがない人でも、無理なく始められる工夫がいっぱいで、Pythonの基礎を楽しみながら身につけたい人におすすめ。
Pythonの基礎をしっかりと学べる構成になっていて、プログラミング初心者にも取り組みやすい内容。基本的な文法から実際に使えるスクリプトまで、ステップバイステップで解説されているため、無理なく進められます。増補改訂版として新たなトピックも追加されており、実践的なスキルを習得したい人にぴったりです。
Pythonを学びはじめる際に最初に読む本として最適。非常に分かりやすく基礎の基礎から学べる。
本書は、データサイエンスやウェブ開発、セキュリティで人気のPythonの入門書で、初級者向けに基礎から応用までを丁寧に解説しています。6年ぶりの改訂版で、Python 3.9に対応し、新機能も追加されています。内容は、基礎、実践的なプログラミング、リファレンスとしても役立つ構成になっています。
『独習Python』は、プログラミング初学者向けのPython入門書で、著者は山田祥寛氏です。本書は、手を動かして学ぶスタイルを重視し、Pythonの基本から応用までを体系的に学べる内容となっています。解説、例題、理解度チェックの3ステップで、基礎知識がない人でも理解しやすい構成です。プログラミング初心者や再入門者におすすめの一冊です。目次には、Pythonの基本、演算子、制御構文、標準ライブラリ、ユーザー定義関数、オブジェクト指向構文などが含まれています。
Pythonをしっかり学びたい人向けの本格的な入門書です。基礎から応用まで幅広いトピックをカバーしており、実際に手を動かしながら理解を深められるよう工夫されています。独習スタイルに特化しているため、自分のペースで着実に学びたい人におすすめ。豊富なコード例や練習問題もあり、プログラミングの実力を着実に高めることができます。
本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
-1" OR 2+159-159-1=0+0+0+1 --
Pythonを学ぶ初学者が一番最初に手に取る本として最適。ただ書籍だと限界があるのでYoutube動画などで合わせて学ぶのがおすすめ。
本書は、理解しやすいコードを書くための方法を紹介しています。具体的には、名前の付け方やコメントの書き方、制御フローや論理式の単純化、コードの再構成、テストの書き方などについて、楽しいイラストを交えて説明しています。著者はボズウェルとフォシェで、須藤功平氏による日本語版解説も収録されています。
初心者がプログラミングを学びやすい構成が魅力。Pythonの基本的な文法から実際にコードを書く過程まで、わかりやすい解説でスムーズに学べます。豊富な例題や演習が用意されているため、しっかりと理解を深めながら進めることができ、実践的なスキルが身につく点がポイントです。初めてPythonに触れる人でも安心して学べます。
線形回帰分析を学んでそこから一般化線形回帰モデル、ベイズと拡張していく上で非常にオススメな本。初学者には少々難解な部分もあるが、統計学を学ぶ上で必ずどこかで読んで欲しい書籍。学生の時に読んだが、これを読むことでこれまで学んできた内容が整理され頭がクリアになった記憶がある。統計学を語るなら絶対読んで欲しい非常におすすめの書籍。
本書は、AI・データ分析プロジェクトの成功には技術知識だけでなく「ビジネス力」が重要であることを強調しています。データサイエンティストのキャリアや業界の概要から始まり、プロジェクトの立ち上げ、実行、評価、収益化までのノウハウを網羅。具体的には、課題設定、案件獲得、データ分析手法の検討、レポーティングなどのプロセスを解説し、実務に役立つ情報を提供しています。著者は業界の専門家で、実践的な知識を基にした内容となっています。
Python(パイソン)は初心者が比較的修得しやすく、AI(人工知能)やパターン認識などの先端技術に活用されている優れたプログラミング言語です。 本書では、初心者を対象に、Pythonを使ったプログラミングの勘所をやさしく解説しました。 例題に取り組むことで、プログラミングとはどういうものかを理解し、プログラミング的思考を身につけてもらうことを目的に執筆しました。 読者の皆さんが、楽しみながらPythonの素晴らしさやプログラミングの醍醐味を感じていただけたら、著者として望外の喜びです。
東大教養学部における多年の講義経験に基づいて書き下ろした解析学の本格的入門書.豊富な練習問題をまじえながら,独自の論理構成でていねいに解き明かす.I 実数と連続,微分法,初等函数,積分法,級数 II 陰函数,積分法(続き),ベクトル解析,複素解析 まえがき 読者への注意 第I章 実数と連続 第II章 微分法 第III章 初等函数 第IV章 積分法 第V章 級数 附録1 集合 附録2 論理記号 問題解答
本書は最適化手法についての入門書であり、経営学やオペレーションズリサーチだけでなく、統計的最適化や機械学習の話題も扱っています。計算機技術の進歩により、複雑な最適化問題が解決可能になった背景を踏まえ、各手法の原理や数学的背景を詳しく解説しています。内容は例題を多く用いて分かりやすく、関連する話題や注意点も随所に挿入されています。目次には数学的準備、関数の極値、最適化手法、最小二乗法、統計的最適化、線形・非線形計画法、動的計画法が含まれています。著者は岡山大学の金谷健一教授です。
内容は少々難解だが、統計学や機械学習・データサイエンス分野のエッセンスが詰まっていて何度も読み返したい書籍。大学院生時代の授業の輪読して使用し、目からウロコの連続だった。ある程度基礎固めをした後に読んでほしい1冊
この本を通読すれば、"pythonがちゃんと書ける人"になれます。機械学習エンジニアやデータサイエンティストであれば、この本の知識があればその後pythonプログラミングで困ることはなくなります。むしろ、組織のpythonコード品質を上げる側のエンジニアになれます。あえて残念な点を挙げるとすれば、デザインパターンへの言及が少ない点です。一部のデザインパターンに対してpythonicに改変する作業を通して学んでいくスタイルですが、欲を言えば全てのデザインパターンに言及があれば良かったです。かなり分厚く重量のある書籍なので、電子書籍を利用することをおすすめします。
「はじめての」とついているが入門書ではなく結構難しい。ただ、機械学習の様々な手法が数式から学べるため中級者〜上級者には良いと思う。他の入門書で機械学習の概要を掴んだ後に読むべき本。
この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
本書は、数理モデルの多様な手法を解説し、データ分析における選択と理解を促進する入門書です。機械学習や統計モデルなど、自然科学と人文社会科学の手法を網羅し、初学者がデータ分析の全体像を把握できるように設計されています。特に、モデリング手法の選択や誤解しやすい点について丁寧に説明し、大学一年生でも理解できるレベルでありながら、より進んだ読者にも楽しめる内容となっています。著者は東京大学の特任講師で、幅広い分野での数理的解析に取り組んでいます。
データサイエンスを学ぶ上でこちらに一通り目を通しておくとベースが出来上がると思うのでオススメ。幅広く学べるがそこまで深く突っ込まないので気に入った領域は他の書籍で補完した方がよいかも!
本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーや生成モデルなどの手法を詳しく解説しています。著者は、実用性を重視し、理論的な証明がなくても納得できる説明を提供することにこだわっています。全12章で構成され、深層学習の基本から応用までを網羅しており、特に実務に役立つ情報が反映されています。著者は東北大学の教授で、研究経験を基にした内容です。