【2023最新】「データサイエンス」のおすすめ本!人気ランキング
- Python実践データ分析100本ノック
- AI・データ分析プロジェクトのすべて[ビジネス力×技術力=価値創出]
- Kaggleで勝つデータ分析の技術
- Pythonデータサイエンスハンドブック ―Jupyter、NumPy、pandas、Matplotlib、scikit-learnを使ったデータ分析、機械学習
- 実践Data Scienceシリーズ RとStanではじめる ベイズ統計モデリングによるデータ分析入門 (KS情報科学専門書)
- 前処理大全[データ分析のためのSQL/R/Python実践テクニック]
- はじめてのパターン認識
- 見て試してわかる機械学習アルゴリズムの仕組み 機械学習図鑑
- Rによるデータサイエンス(第2版):データ解析の基礎から最新手法まで
- データ分析のための数理モデル入門 本質をとらえた分析のために
機械学習の原理を知るための、初めての入門書 本書は具体的なデータ分析の手法を説明する意図で書かれたものではありません。 実用的な目的ならscikit-learnやChainerなどの既存のフレームワークを使うべきですが、本書では機械学習のいくつかの有名なアルゴリズムを、自分でゼロから実装することを目標としています。こうすることにより、とかくブラックボックスになりがちな機械学習の仕組みを理解し、さらなる応用力と問題解決力を身につけることができるようになります。 また、処理系にはデファクトスタンダードであるPythonを使い、機械学習に必要な数学の知識もわかりやすく解説しています。 これから機械学習を始める学生さんや、いきなりプロジェクトに放り込まれていまいち理解できないままデータ分析の仕事をしているエンジニアの方にも最適です。 ●目次 はじめに 第01章 学習を始める前に 01 本書の目的 02 本書は何を含まないか 03 機械学習の初歩 04 実行環境の準備 第02章 Pythonの基本 01 プログラムの実行方法 02 基本的な文法 03 数値と文字列 04 複数行処理 05 制御構造 06 リスト、辞書、集合 07 関数定義 08 オブジェクト指向 09 モジュール 10 ファイル操作 11 例外処理 第03章 機械学習に必要な数学 01 基本事項の確認 02 線形代数 03 微積分 第04章 Pythonによる数値計算 01 数値計算の基本 02 NumPyの基本 03 配列の基本計算 04 疎行列 05 NumPy/SciPyによる線形代数 06 乱数 07 データの可視化 08 数理最適化 09 統計 第05章 機械学習アルゴリズム 01 準備 02 回帰 03 リッジ回帰 04 汎化と過学習 05 ラッソ回帰 06 ロジスティック回帰 07 サポートベクタマシン 08 k-Means法 09 主成分分析(PCA) INDEX はじめに 第01章 学習を始める前に 01 本書の目的 02 本書は何を含まないか 03 機械学習の初歩 04 実行環境の準備 第02章 Pythonの基本 01 プログラムの実行方法 02 基本的な文法 03 数値と文字列 04 複数行処理 05 制御構造 06 リスト、辞書、集合 07 関数定義 08 オブジェクト指向 09 モジュール 10 ファイル操作 11 例外処理 第03章 機械学習に必要な数学 01 基本事項の確認 02 線形代数 03 微積分 第04章 Pythonによる数値計算 01 数値計算の基本 02 NumPyの基本 03 配列の基本計算 04 疎行列 05 NumPy/SciPyによる線形代数 06 乱数 07 データの可視化 08 数理最適化 09 統計 第05章 機械学習アルゴリズム 01 準備 02 回帰 03 リッジ回帰 04 汎化と過学習 05 ラッソ回帰 06 ロジスティック回帰 07 サポートベクタマシン 08 k-Means法 09 主成分分析(PCA) INDEX
文科と理科両方の学生のために,統計的なものの考え方の基礎をやさしく解説するとともに,統計学の体系的な知識を与えるように,編集・執筆された.豊富な実際例を用いつつ,図表を多くとり入れ,視覚的にもわかりやすく親しみながら学べるよう配慮した. 第1章 統計学の基礎(中井検裕,縄田和満,松原 望) 第2章 1次元のデータ(中井検裕) 第3章 2次元のデータ(中井研裕,松原 望) 第4章 確率(縄田和満,松原 望) 第5章 確率変数(松原 望) 第6章 確率分布(松原 望) 第7章 多次元の確率分布(松原 望) 第8章 大数の法則と中心極限定理(中井検裕) 第9章 標本分布(縄田和満) 第10章 正規分布からの標本(縄田和満) 第11章 推定(縄田和満) 第12章 仮説検定(縄田和満,松原 望) 第13章 回帰分析(縄田和満) 統計数値表 練習問題の解答
ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ! 深層学習のさまざまな課題とその対策についても詳しく解説。 ◆ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ!!◆ ・トランスフォーマー、グラフニューラルネットワーク、生成モデルなどをはじめ、各手法を大幅に加筆。 ・深層学習のさまざまな課題と、その対策についても詳しく解説。 [本書まえがきより抜粋] ないもの(=理論)ねだりをしても仕方がありません.それでも皆が研究を進めるのは,そうすることに意義があるからです.なぜうまく働くのか,なぜそうすべきか,数学的な証明はなくても,正しい説明は必ずあるはずです.それを手にできれば,目の前の課題を解決するのに,また次に進むべき道を知るうえで役に立つでしょう. そこで本書では,それぞれの方法について,今の時点で最も納得できる説明をきちんと与えることにこだわりました.名前の通った方法であっても,理屈が成り立たない,あるいは役に立たない方法や考え方については,はっきりそう書きました.著者の主観といわれても仕方がない場合もあるかもしれませんが,そのほうが有益であると信じています. また,現在の深層学習の広がりを把握できるように,定番となった問題・方法に加えて,重要だと思われる問題については,必ずしもそれほど有名でない方法も含めてなるべく網羅するようにしました.その取捨選択には,深層学習が実践的技術であることを踏まえ,実用性を最も重視しました.そこには,この間に著者が企業の実務家たちと行ってきた共同研究での経験が反映されています. [主な内容] 第1章 はじめに 第2章 ネットワークの基本構造 第3章 確率的勾配降下法 第4章 誤差逆伝播法 第5章 畳み込みニューラルネットワーク 第6章 系列データのためのネットワーク 第7章 集合・グラフのためのネットワークと注意機構 第8章 推論の信頼性 第9章 説明と可視化 第10章 いろいろな学習方法 第11章 データが少ない場合の学習 第12章 生成モデル 1章 はじめに 1.1 研究の歴史 1.2 本書の構成 2章 ネットワークの基本構造 2.1 ユニットと活性化関数 2.2 順伝播型ネットワーク 2.3 学習の概要 2.4 問題の定式化:出力層と損失関数の設計 3章 確率的勾配降下法 3.1 確率的勾配降下法 3.2 汎化性能と過剰適合 3.3 正則化 3.4 学習率の選定と制御 3.5 SGDの改良 3.6 層出力の正規化 3.7 重みの初期化 3.8 その他 4章 誤差逆伝播法 4.1 勾配計算の煩わしさ 4.2 誤差逆伝播法 4.3 自動微分 4.4 勾配消失問題 4.5 残差接続 5章 畳み込みニューラルネットワーク 5.1 単純型細胞と複雑型細胞 5.2 畳み込み 5.3 畳み込み層 5.4 プーリング層 5.5 畳み込み層の出力の正規化 5.6 推論のためのCNNの構造 5.7 入出力間の幾何学的関係 5.8 畳み込み層の一般化 5.9 アップサンプリングと畳み込み 5.10 物体カテゴリ認識への適用例 6章 系列データのためのネットワーク 6.1 系列データ 6.2 リカレントニューラルネットワーク 6.3 ゲート機構 6.4 自己回帰モデル 6.5 1次元畳み込みネットワーク 6.6 逆伝播の計算 7章 集合・グラフのためのネットワークと注意機構 7.1 集合データを扱うネットワーク 7.2 注意機構 7.3 トランスフォーマー 7.4 グラフニューラルネットワーク 8章 推論の信頼性 8.1 推論の不確かさ 8.2 不確かさの数理モデル 8.3 不確かさの予測 8.4 分布外入力の検出 8.5 敵対的事例 8.6 品質保証の試み 9章 説明と可視化 9.1 はじめに 9.2 入力による出力の微分 9.3 入力の遮蔽・挿入 9.4 中間層出力の表示 9.5 寄与度の分解 9.6 寄与度の逆伝播 9.7 可視化手法の評価 9.8 影響関数 9.9 学習内容の可視化 10章 いろいろな学習方法 10.1 距離計量学習 10.2 事例集合(マルチインスタンス)学習 10.3 クラスラベルの誤り 10.4 クラス間不均衡 10.5 継続・追加学習 10.6 知識蒸留 10.7 枝刈り 10.8 計算の量子化 10.9 ネットワーク構造探索 11章 データが少ない場合の学習 11.1 はじめに 11.2 データ拡張 11.3 転移学習 11.4 半教師あり学習 11.5 自己教師学習 11.6 マルチタスク学習 11.7 ドメイン適応・汎化 11.8 少数事例学習 11.9 能動学習 12章 生成モデル 12.1 データの生成モデル 12.2 自己符号化器 12.3 変分自己符号化器 12.4 敵対的生成ネットワーク 12.5 正規化フロー 12.6 ボルツマンマシン
東大 松尾研究室が提供するあの人気講座が待望の書籍化! 本書は、2017年と2018年に東京大学で実施された「グローバル消費インテリジェンス寄付 講座」の学生向けオフライン講義と、社会人向けオンライン講座で使われた教材がベースになっています。 約400名ほどの受講枠(2年間)に、のべ1,800人以上の応募があった人気の講義です。この本のベースとなるコンテンツはJupyter Notebook形式で公開されていますが、この内容をさらに精査、ブラッシュアップし、読みやすく整えたものが本書になります。 ●本書の内容 本書には、データサイエンティストになるための基礎をつめこんでいます。データサイエンティストは、Pythonや確率・統計、機械学習など、幅広くさまざまな分野の知識を必要とします。 すべての分野を1冊で学ぶことは無理ですので、各分野で深入りはせず基礎的な事項を取り扱っています。データサイエンティストになるための地図と羅針盤のような位置づけとなることをイメージしています。 この本は主にPython 3を使って、基本的なプログラムの書き方、データの取得、読み込み、そのデータ操作からはじまり、さまざまなPythonのライブラリの使い方、確率統計の手法、機械学習(教師あり学習、教師なし学習とチューニング)の使い方についても学びます。取り扱っているデータは、マーケティングに関するデータやログデータ、金融時系列データなどさまざまで、モデリングの前にそれらを加工する手法も紹介しています。データサイエンティストになるには、どれも必要なスキルです。 本書には、さらに以下の3つの特徴があります。 ・実際のデータを使って手を動かしながら、データサイエンスのスキルを身に付けることができる ・データ分析の現場で使える実践的な内容(データ前処理など)が含まれている ・練習問題や総合問題演習など実際に頭を使って考える内容がたくさんある この本に書いてあることを実践し、読み終えた後には、実際の現場でデータ分析ができるようになるはずです。 ●この本の対象読者 この本は、プログラミングの経験があり、理系の大学1~2年生程度の教養課程の数学(線形代数、微分積分学、確率統計の基礎など)を終えている方を対象にしています。具体的には、勉強熱心な大学3~4年生の理系の学生さんや大学院生の方、また社会人になってデータサイエンスを学ぼうという意欲の高い方たちが対象です。データサイエンスの入門レベルから中級レベルの手前までを考えている人に最適で、本書のゴールもデータサイエンス入門レベルを卒業できることを想定しています。 "Contents Chapter 1 本書の概要とPythonの基礎 1-1 データサイエンティストの仕事 1-1-1 データサイエンティストの仕事 1-1-2 データ分析のプロセス 1-1-3 本書の構成 1-1-4 本書を読み進めるのに役立つ文献 1-1-5 手を動かして習得しよう 1-2 Pythonの基礎 1-2-1 Jupyter Notebookの使い方 1-2-2 Pythonの基礎 1-2-3 リストと辞書型 1-2-4 条件分岐とループ Column format記法と%記法 1-2-5 関数 Practice 練習問題1-1 Practice 練習問題1-2 1-2-6 クラスとインスタンス Practice 1章 総合問題 Chapter 2 科学計算、データ加工、グラフ描画ライブラリの使い方の基礎 2-1 データ分析で使うライブラリ 2-1-1 ライブラリの読み込み 2-1-2 マジックコマンド 2-1-3 この章で使うライブラリのインポート 2-2 Numpyの基礎 2-2-1 Numpyのインポート 2-2-2 配列操作 2-2-3 乱数 Column Numpyは高速 2-2-4 行列 Practice 練習問題2-1 練習問題2-2 練習問題2-3 2-3 Scipyの基礎 2-3-1 Scipyのライブラリのインポート 2-3-2 行列計算 2-3-3 ニュートン法 Practice 練習問題2-4 練習問題2-5 練習問題2-6 2-4 Pandasの基礎 2-4-1 Pandasのライブラリのインポート 2-4-2 Seriesの使い方 2-4-3 DataFrameの使い方 2-4-4 行列操作 2-4-5 データの抽出 2-4-6 データの削除と結合 2-4-7 集計 2-4-8 値のソート 2-4-9 nan(null)の判定 Practice 練習問題2-7 Practice 練習問題2-8 Practice 練習問題2-9 2-5 Matplotlibの基礎 2-5-1 Matplotlibを使うための準備 2-5-2 散布図 2-5-3 グラフの分割 2-5-4 関数グラフの描画 2-5-5 ヒストグラム Column さまざまなデータのビジュアル化 Practice 練習問題2-10 Practice 練習問題2-11 Practice 練習問題2-12 Practice 2章 総合問題 Chapter 3 記述統計と単回帰分析 3-1 統計解析の種類 3-3-1 記述統計と推論統計 3-3-2 この章で使うライブラリのインポート 3-2 データの読み込みと対話 3-2-1 インターネットなどで配布されている対象データの読み込み 3-2-2 データの読み込みと確認 3-2-3 データの性質を確認する Column 「変数」という用語について 3-2-4 量的データと質的データ 3-3 記述統計 3-3-1 ヒストグラム 3-3-2 平均、中央値、最頻値 3-3-3 分散と標準偏差 3-3-4 要約統計量とパーセンタイル値 3-3-5 箱ひげ図 3-3-6 変動係数 3-3-7 散布図と相関係数 3-3-8 すべての変数のヒストグラムや散布図を描く Practice 練習問題3-1 Practice 練習問題3-2 Practice 練習問題3-3 3-4 単回帰分析 3-4-1 線形単回帰分析 3-4-2 決定係数 Practice 練習問題3-4 Practice 練習問題3-5 Practice 練習問題3-6 Practice 3章 総合問題 Chapter 4 確率と統計の基礎 4-1 確率と統計を学ぶ準備 4-1-1 この章の前提知識 4-1-2 この章で使うライブラリのインポート 4-2 確率 4-2-1 数学的確率 4-2-2 統計的確率 4-2-3 条件付き確率と乗法定理 4-2-4 独立と従属 4-2-5 ベイズの定理 Practice 練習問題4-1 Practice 練習問題4-2 Practice 練習問題4-3 4-3 確率変数と確率分布 4-3-1 確率変数、確率関数、分布関数、期待値 4-3-2 さまざまな分布関数 4-3-3 カーネル密度関数 Practice 練習問題4-4 Practice 練習問題4-5 Practice 練習問題4-6 4-4 応用:多次元確率分布 4-4-1 同時確率関数と周辺確率関数 4-4-2 条件付き確率関数と条件付き期待値 4-4-3 独立の定義と連続分布 4-5 推計統計学 4-5-1 大数の法則 4-5-2 中心極限定理 4-5-3 標本分布 Practice 練習問題4-7 Practice 練習問題4-8 Practice 練習問題4-9 4-6 統計的推定 4-6-1 推定量と点推定 4-6-2 不偏性と一致性 4-6-3 区間推定 4-6-4 推定量を求める Practice 練習問題4-10 Practice 練習問題4-11 Practice 練習問題4-12 4-7 統計的検定 4-7-1 検定 4-7-2 第1種の過誤と第2種の過誤 4-7-3 ビッグデータに対する検定の注意 Practice 練習問題4-13 Practice 4章 総合問題 Chapter 5 Pythonによる科学計算(NumpyとScipy) 5-1 概要と事前準備 5-1-1 この章の概要 5-1-2 この章で使うライブラリのインポート 5-2 Numpyを使った計算の応用 5-2-1 インデックス参照 Practice 練習問題5-1 Practice 練習問題5-2 Practice 練習問題5-3 5-2-2 Numpyの演算処理 Practice 練習問題5-4 Practice 練習問題5-5 Practice 練習問題5-6 5-2-3 配列操作とブロードキャスト Practice 練習問題5-7 Practice 練習問題5-8 Practice 練習問題5-9 5-3 Scipyを使った計算の応用・ 5-3-1 補間 5-3-2 線形代数:行列の分解 Practice 練習問題5-10 Practice 練習問題5-11 Practice 練習問題5-12 Practice 練習問題5-13 Practice 練習問題5-14 5-3-3 積分と微分方程式 Practice 練習問題5-15 Practice 練習問題5-16 5-3-4 最適化 Practice 練習問題5-17 Practice 練習問題5-18 Practice 5章 総合問題 Chapter 6 Pandasを使ったデータ加工処理 6-1 概要と事前準備 6-1-1 この章で使うライブラリのインポート 6-2 Pandasの基本的なデータ操作 6-2-1 階層型インデックス Practice 練習問題6-1 Practice 練習問題6-2 Practice 練習問題6-3 6-2-2 データの結合 Practice 練習問題6-4 練習問題6-5 練習問題6-6 6-2-3 データの操作と変換 Practice 練習問題6-7 Practice 練習問題6-8 Practice 練習問題6-9 6-2-4 データの集約とグループ演算 Practice 練習問題6-10 Practice 練習問題6-11 Practice 練習問題6-12 6-3 欠損データと異常値の取り扱いの基礎 6-3-1 欠損データの扱い方 Practice 練習問題6-13 Practice 練習問題6-14 Practice 練習問題6-15 6-3-2 異常データの扱い方 6-4 時系列データの取り扱いの基礎 6-4-1 時系列データの処理と変換 Practice 練習問題6-16 6-4-2 移動平均 Practice 練習問題6-17 Practice 6章 総合問題 Chapter 7 Matplotlibを使ったデータ可視化 7-1 データの可視化 7-1-1 データの可視化について 7-1-2 この章で使うライブラリのインポート 7-2 データ可視化の基礎 7-2-1 棒グラフ 7-2-2 円グラフ Practice 練習問題7-1 Practice 練習問題7-2 Practice 練習問題7-3 7-3 応用:金融データの可視化 7-3-1 可視化する金融データ 7-3-2 ローソクチャートを表示するライブラリ 7-4 応用:分析結果の見せ方を考えよう 7-4-1 資料作成のポイントについて Practice 7章 総合問題 Column 移動平均時系列データと対数時系列データ Chapter 8 機械学習の基礎(教師あり学習) 8-1 機械学習の全体像 8-1-1 機械学習とは 8-1-2 教師あり学習 8-1-3 教師なし学習 8-1-4 強化学習 8-1-5 この章で使うライブラリのインポート 8-2 重回帰 8-2-1 自動車価格データの取り込み 8-2-2 データの整理 8-2-3 モデル構築と評価 8-2-4 モデル構築とモデル評価の流れのまとめ Practice 練習問題8-1 8-3 ロジスティック回帰 8-3-1 ロジスティック回帰の例 8-3-2 データの整理 8-3-3 モデル構築と評価 8-3-4 スケーリングによる予測精度の向上 Practice 練習問題8-2 Practice 練習問題8-3 8-4 正則化項のある回帰:ラッソ回帰、リッジ回帰 8-4-1 ラッソ回帰、リッジ回帰の特徴 8-4-2 重回帰とリッジ回帰の比較 Practice 練習問題8-4 8-5 決定木 8-5-1 キノコデータセット 8-5-2 データの整理 8-5-3 エントロピー:不純度の指標 8-5-4 情報利得:分岐条件の有益さを測る 8-5-5 決定木のモデル構築 Practice 練習問題8-5 8-6 k-NN(k近傍法) 8-6-1 k-NNのモデル構築 Practice 練習問題8-6 Practice 練習問題8-7 8-7 サポートベクターマシン 8-7-1 サポートベクターマシンのモデル構築 Practice 練習問題8-8 Practice 8章 総合問題 Chapter 9 機械学習の基礎(教師なし学習) 9-1 教師なし学習 9-1-1 教師なしモデルの種類 9-1-2 この章で使うライブラリのインポート 9-2 クラスタリング 9-2-1 k-means法 9-2-2 k-means法でクラスタリングする 9-2-3 金融マーケティングデータをクラスタリングする 9-2-4 エルボー法によるクラスター数の推定 9-2-5 クラスタリング結果の解釈 9-2-6 k-means法以外の手法 Practice 練習問題9-1 9-3 主成分分析 9-3-1 主成分分析を試す 9-3-2 主成分分析の実例 Practice 練習問題9-2 9-4 マーケットバスケット分析とアソシエーションルール 9-4-1 マーケットバスケット分析とは 9-4-2 マーケットバスケット分析のためのサンプルデータを読み込む 9-4-3 アソシエーションルール Practice 9章 総合問題 Chapter 10 モデルの検証方法とチューニング方法 10-1 モデルの評価と精度を上げる方法とは 10-1-1 機械学習の課題とアプローチ 10-1-2 この章で使うライブラリのインポート 10-2 モデルの評価とパフォーマンスチューニング 10-2-1 ホールドアウト法と交差検証法 10-2-2 パフォーマンスチューニング:ハイパーパラメータチューニング Practice 練習問題10-1 Practice 練習問題10-2 10-2-3 パフォーマンスチューニング:特徴量の扱い 10-2-4 モデルの種類 10-3 モデルの評価指標 10-3-1 分類モデルの評価:混同行列と関連指標 10-3-2 分類モデルの評価:ROC曲線とAUC Practice 練習問題10-3 10-3-3 回帰モデルの評価指標 Practice 練習問題10-4 10-4 アンサンブル学習 10-4-1 バギング Practice 練習問題10-5 10-4-2 ブースティング 10-4-3 ランダムフォレスト、勾配ブースティング Practice 練習問題10-6 10-4-4 今後の学習に向けて Practice 練習問題10-7 Practice 10 章 総合問題 Chapter 11 総合演習問題 11-1 総合演習問題 11-1-1 総合演習問題(1) 11-1-2 総合演習問題(2) 11-1-3 総合演習問題(3) 11-1-4 総合演習問題(4) 11-1-5 総合演習問題(5) 11-1-6 総合演習問題(6) 11-1-7 参考:今後のデータ分析に向けて Appendix A-1 本書の環境構築について A-1-1 Anacondaについて A-1-2 Anacondaのパッケージをダウンロードする A-1-3 Anacondaをインストールする A-1-4 pandas-datareaderおよびPlotlyのインストール A-2 練習問題解答 A-2-1 Chapter1 練習問題 A-2-2 Chapter2 練習問題 A-2-3 Chapter3 練習問題 A-2-4 Chapter4 練習問題 A-2-5 Chapter5 練習問題 A-2-6 Chapter6 練習問題 A-2-7 Chapter7 練習問題 A-2-8 Chapter8 練習問題 A-2-9 Chapter9 練習問題 A-2-10 Chapter10 練習問題 A-2-11 Chapter11 総合演習問題 Column ダミー変数と多重共線性 A-3 参考文献・参考URL A-3-1 参考文献 A-3-2 参考URL
仕事で機械学習に携わる際に知っておきたい事を伝えるというコンセプトで、機械学習を使った実務に初めて関わる読者のための1冊。 大好評の機械学習実務者向け書籍が最新情報にアップデート! 2018年に発行された初版から3年ぶりの改訂となる本書は、「仕事で機械学習に携わる際に知っておきたい事」を伝えるというコンセプトはそのままに、3年の間に登場した新たな考え方、手法など最新の情報を踏まえて内容を全面的に見直しました。これまで同様、機械学習を使った実務に初めて関わる読者にとって頼りになる1冊となるでしょう。「バンディットアルゴリズム」を紹介する新章など、追加原稿も多数。 仕事で機械学習に携わる際に知っておきたい事を伝えるというコンセプトで、機械学習を使った実務に初めて関わる読者のための1冊。
ビジネスで利用されるデータの多くは、その施策の意思決定を行う人物や組織の目的にそった活動の延長上で作られています。具体的には、DM送付などの広告施策であれば、担当者はユーザの反応率を上げるために、反応しやすいであろうユーザに対してのみDMを発送します。ここで発生したデータでDMの効果を計る場合、単純にDMを受け取っているか否かで結果を比較することは、DMの効果以外にも意図的にリストされたユーザの興味や関心を含んでしまうことになります。 データが生まれるプロセスに人の意思が関わる場合、単純な集計では判断ミスとなる可能性があります。わずかな計算の狂いでも後々のビジネスにおいて大きな影響を及ぼすことになるため、バイアスのない状態で効果検証できることが望まれるのです。 本書では「単純に比較すると間違った結論に導くデータ」から、より正しい結果を導くための分析手法と考え方を提供します。計量経済学における効果とは何か? を提示し、RCT(ランダム化比較試験)がいかに理想的な方法かを説明し、RCTができない場合でも因果推論を用いてRCTの再現が可能だということを説明していきます。 嘘っぱちの効果とそれを見抜けないデータ分析 思い込みによる意思決定の蔓延 「バイアス」によって見誤る効果 因果推論と計量経済学のビジネス適用 本書の構成 想定する読者 サンプルコードとサポート 1 章 セレクションバイアスとRCT 1.1 セレクションバイアスとは 1.1.1 効果 1.1.2 潜在的な購買量の差 1.1.3 誤った施策の検証 1.2 RCT(Randomized Controlled Trial) 1.2.1 本当の「効果」と理想的な検証方法 1.2.2 RCTによる検証 1.3 効果を測る理想的な方法 1.3.1 母集団と推定 1.3.2 ポテンシャルアウトカムフレームワーク 1.3.3 ポテンシャルアウトカムフレームワークによる介入効果の推定 1.3.4 平均的な効果 1.3.5 平均的な効果の比較とセレクションバイアス 1.3.6 介入の決まり方がセレクションバイアスの有無を決める 1.3.7 RCTを行った疑似データでの比較 1.3.8 有意差検定の概要と限界 1.4 R によるメールマーケティングの効果の検証 1.4.1 RCTを行ったデータの準備 1.4.2 RCTデータの集計と有意差検定 1.4.3 バイアスのあるデータによる効果の検証 1.5 ビジネスにおける因果推論の必要性 1.5.1 RCTの実行にはコストがかかる 1.5.2 セレクションバイアスが起きる理由 1.5.3 ビジネスにおけるバイアスのループ 参考文献 2 章 介入効果を測るための回帰分析 2.1 回帰分析の導入 2.1.1 単回帰分析 2.1.2 効果分析のための回帰分析 2.1.3 回帰分析による効果の推定 2.1.4 回帰分析における有意差検定 2.1.5 Rによるメールマーケティングデータの分析(回帰編) 2.1.6 効果検証のための回帰分析で行わないこと 2.2 回帰分析におけるバイアス 2.2.1 共変量の追加による効果への作用 2.2.2 脱落変数バイアス(OVB) 2.2.3 R によるOVBの確認 2.2.4 OVB が与えてくれる情報 2.2.5 Conditional Independence Assumption 2.2.6 変数の選び方とモデルの評価 2.2.7 Post treatment bias 2.3 回帰分析を利用した探索的な効果検証 2.3.1 PACESによる学費の割引券配布の概要 2.3.2 R による回帰分析の実行 2.3.3 私立学校への通学と割引券の利用についての分析 2.3.4 割引券は留年を減らしているか? 2.3.5 性別による効果差 2.3.6 分析のまとめ 2.4 回帰分析に関するさまざまな議論 2.4.1 予測と効果推定 2.4.2 制限被説明変数(Limited Dependent Variable) 2.4.3 対数を利用した回帰分析 2.4.4 多重共線性 2.4.5 パラメータの計算 参考文献 3 章 傾向スコアを用いた分析 3.1 傾向スコアのしくみ 3.1.1 傾向スコアのアイデア 3.1.2 傾向スコアの推定 3.2 傾向スコアを利用した効果の推定 3.2.1 傾向スコアマッチング 3.2.2 逆確率重み付き推定 3.2.3 より良い傾向スコアとは 3.2.4 傾向スコアと回帰分析の比較 3.2.5 マッチングとIPW の差 3.3 機械学習を利用したメールマーケティング施策の効果推定 3.3.1 データの作成 3.3.2 RCTと平均の比較 3.3.3 傾向スコアを用いた分析 3.4 LaLonde データセットの分析 3.4.1 NSW の概要とデータの準備 3.4.2 RCTによる結果の確認 3.4.3 回帰分析による効果の推定 3.4.4 傾向スコアによる効果の推定 参考文献 4 章 差分の差分法(DID)とCausalImpact 4.1 DID(差分の差分法) 4.1.1 DID が必要になる状況 4.1.2 集計による効果検証とその欠点 4.1.3 DID のアイデアを用いた集計分析 4.1.4 回帰分析を利用したDID 4.1.5 DID における標準誤差 4.1.6 平行トレンド仮定(Common Trend Assumption)と共変量 4.2 CausalImpact 4.2.1 DID の欠点 4.2.2 CausalImpactのアイデア 4.3 大規模禁煙キャンペーンがもたらすタバコの売上への影響 4.3.1 データの準備 4.3.2 DID の実装 4.3.3 CausalImpactの実装 4.3.4 分析結果の比較 4.4 不完全な実験を補佐する 4.4.1 DID のアイデアを用いた分析が使えないとき 参考文献 5 章 回帰不連続デザイン(RDD) 5.1 ルールが生み出すセレクションバイアス 5.1.1 回帰不連続デザインのしくみ 5.1.2 集計によるセレクションバイアスの確認 5.2 回帰不連続デザイン(RDD) 5.2.1 線形回帰による分析 5.2.2 非線形回帰による分析 5.2.3 メールによる来訪率の増加効果を分析する 5.3 nonparametric RDD 5.3.1 nonparametric RDD のしくみ 5.3.2 R によるnonparametric RDD の実装 5.4 回帰不連続デザインの仮定 5.4.1 Continuity of Conditional Regression Functions 5.4.2 non-manipulation 5.4.3 LATEの妥当性 5.5 ビジネスにおける介入割り当てルール 5.5.1 ユーザセグメントへの介入 5.5.2 Uber による価格変更の分析 参考文献 付録 RとRStudioの基礎 A.1 R およびRStudio のダウンロード Rのインストール Rの起動と終了 RStudio のインストール A.2 RStudio の基本 パネルの役割 プロジェクトと作業ディレクトリ A.3 R プログラミングの初歩 オブジェクト ベクトル 関数 データフレーム 行列 パッケージの利用 ■ 作業(ワーク)スペース 因果推論をビジネスにするために 因果推論を活用できる環境とは より正しい意思決定をするために 高次元の共変量を扱うためのR パッケージ より強い因果効果を得るために 参考文献 索引
大学の数学がこんなに分かる!単位なんて楽に取れる!モーメント母関数?中心極限定理?大丈夫!マセマならスグ分かる。 講義1 離散型確率分布(1変数確率関数)(確率編) 講義2 連続型確率分布(1変数確率密度)(確率編) 講義3 2変数の確率分布(確率編) 講義4 ポアソン分布と正規分布(確率編) 講義5 χ2分布、t分布、F分布(確率編) 講義6 データの整理(記述統計)(統計編) 講義7 推定(統計編) 講義8 検定(統計編)
動植物の個体数推移を、行列と統計推論を使って予測する「個体群行列モデル」を分かりやすく解説。 【線形代数で、希少動物の生存可否を見極める!】 統計スポットライト・シリーズ第5巻となる本書は、個体群(ある同種の動物もしくは植物の集団)の生息数の推移を「個体群行列モデル」で予測する方法を解説する。このモデルにより、野外調査で得られる個体数データから希少動物の生存の可否などが予測可能になる。 このモデルで使う数学は線形代数の基礎に限られ、その都度丁寧に説明するため数学が苦手な読者でも挫折しにくい。また、現実的な個体数推移を保証するために仮定する、生態学を基にした統計推論についても適宜解説する。統計ソフトRによる計算結果も一部掲載。 統計スポットライト・シリーズ第5巻。動植物の個体数推移を、行列と統計推論を使って予測する「個体群行列モデル」を丁寧にわかりやすく解説。野外調査の個体数データから希少動物の生存の可否などが予測可能になる。 第1章 シミュレーションで数式を用いる恩恵を知る 第2章 生物集団の野外調査データと生活史の図式化 第3章 個体群行列と3 つの基本統計量 第4章 行列要素の推定法1:統計モデルと最尤法 第5章 環境条件の効果を見る1――感度分析の基礎 第6章 行列要素の推定法2:ベイズ統計とランダムなサンプル 第7章 環境条件の効果を見る2――感度分析の発展(生命表反応解析(LTRE解析))
大好評!デジタル時代の必携リテラシー、G検定の「公式テキスト」の改訂版! 【本書の特徴】 ・大ベストセラー、ディープラーニング G検定 公式テキストの改訂版。 ・改訂された新シラバスに完全準拠。 ・試験運営団体である「日本ディープラーニング協会」が監修。 ・章末問題を大増量。分かりやすい解説付き。 ・ディープラーニングに関する入門書としても最適。 【対象読者】 ・ G検定を受験しようと思っている人 ・ディープラーニングについて概要を学びたい人 ・ディープラーニングを事業活用しようと思っている人・DX推進を検討している人 【G検定とは】 ・内容:ディープラーニングを事業に活かすための知識を有しているかを検定する ・試験方式:知識問題(多肢選択式)、オンライン実施(自宅受験) ・日程:年3回(詳細は公式サイトにて公表) 【目次】 試験の概要 第1章 人工知能(AI)とは 第2章 人工知能をめぐる動向 第3章 人工知能分野の問題 第4章 機械学習の具体的手法 第5章 ディープラーニングの概要 第6章 ディープラーニングの手法 第7章 ディープラーニングの社会実装に向けて Appendix 事例集 産業への応用 第1章 人工知能(AI)とは 1-1.人工知能(AI)とは 1-2.人工知能研究の歴史 第2章 人工知能をめぐる動向 2-1.探索・推論 2-2.知識表現 2-3.機械学習・深層学習 第3章 人工知能分野の問題 3-1.人工知能分野の問題 第4章 機械学習の具体的手法 4-1.代表的な手法 4-2.モデルの評価 第5章 ディープラーニングの概要 5-1.ニューラルネットワークとディープラーニング 5-2.ディープラーニングのアプローチ 5-3.ディープラーニングを実現するには 5-4.活性化関数 第6章 ディープラーニングの手法 6-1.畳み込みニューラルネットワーク 6-2.深層生成モデル 6-3.画像認識分野での応用 6-4.音声処理と自然言語処理分野 6-5.深層強化学習 6-6.モデルの解釈性の問題とその対応 第7章 ディープラーニングの社会実装に向けて 7-1.AIと社会 7-2.AIプロジェクトを計画する 7-3.データを集める 7-4.データを加工・分析・学習させる 7-5.実装・運用・評価する 7-6.クライシス・マネジメントをする Appendix 事例集 産業への応用 A-1.製造業領域における応用事例 A-2.モビリティ領域における応用事例 A-3.医療領域における応用事例 A-4.介護領域における応用事例 A-5.インフラ領域における応用事例 A-6.サービス・小売・物流領域における応用事例 A-7.農林水産業領域における応用事例 A-8.その他領域における応用事例
最先端のデータ分析の手法を基礎から応用までざっと学べる1冊! 【本書の内容】 次代の花形職種である「データサイエンティスト」はどのような知識を身につけているのか? データサイエンスとは?という基礎から、実際にデータ分析するために必要なパソコンの知識、プログラミングの基礎、機械学習、画像解析まで。 気鋭の若手研究者による、データサイエンス入門の一冊。 【本書の目次】 第1部 データサイエンスの基本●(1)データサイエンスとは? 第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法 第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習 第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析 第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析 世界最先端の企業が喉から手が出るほど欲しい人材のひとつ、「データサイエンティスト」。この職につく人々が身につけるべき知識とはいったい何なのか。最先端のデータ分析の手法を基礎からざっと学べる1冊! 第1部 データサイエンスの基本●(1)データサイエンスとは? 第2部 データサイエンスの基礎技術●(2)計算機の仕組み/(3)プログラミングの基礎(1)/(4)プログラミングの基礎(2)/(5)アルゴリズム(1)/(6)アルゴリズム(2)/(7)データベース/(8)最適化の方法 第3部 統計学・機械学習の基礎●(9)機械学習の基本/(10)過学習とモデル選択/(11)回帰問題と住宅価格/(12)アンサンブル学習と住宅価格/(13)分類問題/(14)教師なし学習 第4部 コーパスとネットワークの分析●(15)トピックモデル/(16)ネットワーク分析 第5部 ディープラーニング●(17)ニューラルネットワークの基礎/(18)ディープラーニング/(19)ディープラーニングによる系列データ分析/(20)ディープラーニングによる画像分析
RとPython両方学べる。コスパ最強の一冊!「データサイエンスの準備」にページを割いたから、プログラミング経験ゼロで大丈夫 ◆RとPython両方学べる。コスパ最強の一冊!◆ ・コードが理解の試金石! ・「データサイエンスの準備」にページを割いているから、プログラミング経験ゼロで大丈夫! ・自分に合った言語を見つけたい、言語を乗り換えたいという方にもおすすめ! [サポートサイト] https://github.com/taroyabuki/fromzero [主な内容] 第1部 データサイエンスのための準備 1章 コンピュータとネットワーク 2章 データサイエンスのための環境 3章 RとPython 4章 統計入門 5章 前処理 第2部 機械学習 6章 機械学習の目的・データ・手法 7章 回帰1(単回帰) 8章 回帰2(重回帰) 9章 分類1(多値分類) 10章 分類2(2値分類) 11章 深層学習とAutoML 12章 時系列予測 13章 教師なし学習 付録A 環境構築 第1部 データサイエンスのための準備 1章 コンピュータとネットワーク 1.1 コンピュータの基本操作 1.2 ネットワークのしくみ 2章 データサイエンスのための環境 2.1 実行環境の選択 2.2 クラウド 2.3 Docker 2.4 ターミナルの使い方 2.5 RとPython 2.6 サンプルコードの利用 3章 RとPython 3.1 入門 3.2 関数 3.3 コレクション 3.4 データフレーム 3.5 1次元データの(非)類似度 3.6 Rのパッケージ,Pythonのモジュール 3.7 反復処理 3.8 その他 4章 統計入門 4.1 記述統計 4.2 データの可視化 4.3 乱数 4.4 統計的推測 5章 前処理 5.1 データの読み込み 5.2 データの変換 第2部 機械学習 6章 機械学習の目的・データ・手法 6.1 機械学習の目的(本書の場合) 6.2 機械学習のためのデータ 6.3 機械学習の手法 7章 回帰1(単回帰) 7.1 自動車の停止距離 7.2 データの確認 7.3 回帰分析 7.4 当てはまりの良さの指標 7.5 K最近傍法 7.6 検証 7.7 パラメータチューニング 8章 回帰2(重回帰) 8.1 ブドウの生育条件とワインの価格 8.2 重回帰分析 8.3 標準化 8.4 入力変数の数とモデルの良さ 8.5 変数選択 8.6 補足:正則化 8.7 ニューラルネットワーク 9章 分類1(多値分類) 9.1 アヤメのデータ 9.2 木による分類 9.3 正解率 9.4 複数の木を使う方法 9.5 欠損のあるデータでの学習 9.6 他の分類手法 10章 分類2(2値分類) 10.1 2値分類の性能指標 10.2 トレードオフ 10.3 2値分類の実践 10.4 ロジスティック回帰 11章 深層学習とAutoML 11.1 Kerasによる回帰 11.2 Kerasによる分類 11.3 MNIST:手書き数字の分類 11.4 AutoML 12章 時系列予測 12.1 日時と日時の列 12.2 時系列データの予測 13章 教師なし学習 13.1 主成分分析 13.2 クラスタ分析 付録A 環境構築
急速に広がるディープラーニング活用の今と未来がわかる!国内の事例を体系的に取り上げ先駆者が解説 AIは研究から実用フェーズへ―― 急速に広がるディープラーニング活用の今と未来がわかる! 国内35社の事例を体系的に取り上げ、先駆者が苦労したポイントを解説 <日本ディープラーニング協会監修> 活用を検討する企業でよく生じる疑問にも答えます。 次世代の新規事業や業務改善の企画に欠かせない1冊! インターネットに遅れること20年、ディープラーニングは、 「汎用目的技術」の1つとして、あらゆる産業を変えていくとみられています。 汎用目的技術とは、古くは動物の家畜化、車輪、印刷の発明から、鉄道、電気、 自動車、インターネットまで「原理は単純で汎用的でさまざまなことに利用できる」 技術のことをいいます。 本書は、ディープラーニングが与えるインパクトを事例を基に解説します。 第1章では、東京大学大学院工学系研究科 特任准教授の松尾豊氏が描く「ディープラーニングをベースにしたAIの技術的発展」(ロードマップ)を解説。 第2~5章ではこのロードマップを基に国内の先進事例を分類して紹介していきます。 カツ丼の盛り付けを判定、泳ぐマグロの数を数える、クリーニング衣類を判別、文章の校閲、河川の護岸の傷判定、送電線の異常検知、道路下の空洞を探る、タクシーの乗客数予測、テレビCMの効果を予測、お弁当の盛り付け、重機で自動掘削、白黒映像の色付け、仮想アイドル画像の生成、プロ並みアナウンサー、人の話し方をまねる……続々登場する、こうしたディープラーニングの驚異の活用法が分かります。 第1章 ディープラーニングの発展予測 第2章 [Step1] 人の「眼」となり単純作業から解放する 第3章 [Step2] 「五感」を担い行動予測や異常検知を実現 第4章 [Step3] 現実社会に柔軟に対応 「ロボット」「自動運転」の時代 第5章 「創作」業務へも広がる活用範囲 第6章 ビジネス活用Q&A ──向く分野/向かない分野、データ、人材、投資などの悩みに回答
『数学大百科事典』に続くシリーズ第2弾。実務や試験で統計分析を行う人のためにその手法から理論まで網羅的に解説する。 実は身近な統計学の理論が効率的に学べる 【本書の特徴】 ●さまざまな分野で登場する可能性の高い統計学の公式・定理を解説しています ●統計学を必要としている人が効率的に・要領よく学ぶことができます ●充実した索引を活用し、リファレンスとしても利用できます ●各項目に「難易度」「実用」「試験」それぞれの重要性を星5段階で示しています ●「Business」という項目で、その統計学の知識を利用した身近な例を紹介しています ●項目ごとに想定される読者の統計学のレベル・数式リテラシーに 合わせて記述しているので、学習時間と内容にムダがありません。 現代において統計学の知識は、 あらゆる分野で必要不可欠なものになっています。 最近では理系・文系の垣根も崩れ、 「経営学」や「経済学」、「医学」など、さまざまな分野で 統計学の素養が求められています。 しかし統計手法を普段実務で使っている方でも、 どの手法を選んだらよいか迷ったり、 場面が異なると手順がわからなかったりと、 応用が利かないものになっているのではないでしょうか。 そして、いざ学ぼうと思っても、 統計学の参考書は厳密に解説し過ぎていて学習に時間がかかってしまったり、 個別の例に沿いすぎていて応用が利かなかったりします。 そのため本書では、統計学の知識を効率的に学びたい人のために、 重要な公式・定理などに絞って、その手法の理論や特徴を解説しています。 巻末にAppendixとして付けている統計学の数値表もご参照ください。 【こんな方におすすめ】 ・実務や試験で統計分析を行う方。 ・統計検定の受験を考えている方。 ・高校や大学で学んだ数学の知識を活用したいと考えている方。 (各節ごとのレベル感は、★で示しています) <本書の構成> Chapter 01 記述統計 Chapter 02 相関関係 Chapter 03 確率 Chapter 04 確率分布 Chapter 05 推定 Chapter 06 検定 Chapter 07 ノンパラメトリック検定 Chapter 08 回帰分析 Chapter 09 分散分析と多重比較法 Chapter 10 多変量解析 Chapter 11 ベイズ統計 Appendix Chapter 01 記述統計 Introduction 01 データの尺度 02 度数分布表とヒストグラム 03 パレート図 04 添え字とシグマ記号 05 平均・分散・標準偏差 06 度数分布表と平均・分散 07 代表値 08 変量の標準化 09 歪度・尖度 10 四分位数・箱ひげ図 11 クロス表 12 円グラフ・帯グラフ・折れ線グラフ 13 散布図 14 ローレンツ曲線 15 Q-Qプロット Column|幹葉図からデータの代表値を読み取る Chapter 02 相関関係 Introduction 01 ピアソンの相関係数 02 スピアマンの順位相関係数 03 ケンドールの順位相関係数 04 クラメールの連関係数 05 相関係数の推定・検定 06 自己相関係数 Column|疑わしい相関はいくらでもある Chapter 03 確率 Introduction 01 事象と確率 02 包含と排除の原理 03 離散型確率変数 04 連続型確率変数 05 累積分布関数 06 期待値・分散 07 事象の独立・確率変数の独立 08 確率変数の和・積 09 2次元の確率変数(離散型) 10 2次元の確率変数(連続型) 11 期待値・分散の公式 12 大数の法則・中心極限定理 13 チェビシェフの不等式 Column|クラスの中に誕生日が同じ2人がいる確率を求める Chapter 04 確率分布 Introduction 01 ベルヌーイ分布・二項分布 02 幾何分布・負の二項分布 03 ポアソン分布 04 超幾何分布 05 一様分布・指数分布 06 正規分布 07 c2分布・t分布・F分布(概説) 08 c2分布・t分布・F分布(詳説) 09 ワイブル分布・パレート分布・対数正規分布 10 多項分布 11 多次元正規分布 Column|確率分布の値をソフトで求める Chapter 05 推定 Introduction 01 復元抽出・非復元抽出 02 標本の抽出法 03 最尤法 04 区間推定の仕組み 05 正規母集団の母平均の区間推定 06 母比率の区間推定 07 推定量の評価基準 08 不偏推定量 Column|紛らわしい標準偏差と標準誤差の違い Chapter 06 検定 Introduction 01 検定の原理と手順 02 検定統計量 03 検定の誤り 04 正規母集団の母平均の検定 05 正規母集団の母分散の検定 06 母平均の差の検定(1) 07 母平均の差の検定(2) 08 母比率の差の検定 09 等分散検定 Column|医療現場で行われる検定 Chapter 07 ノンパラメトリック検定 Introduction 01 適合度検定 02 独立性の検定(2×2のクロス集計表) 03 独立性の検定(k×lのクロス集計表) 04 フィッシャーの正確確率検定 05 マクネマー検定 06 コクランのQ検定 07 マン―ホイットニーのU検定 08 符号検定 09 ウィルコクソンの符号付き順位検定 10 クラスカル―ウォリス検定 11 フリードマン検定 Column|統計学 紛らわしい用語集 Chapter 08 回帰分析 Introduction 01 単回帰分析 02 重回帰分析 03 重相関係数・偏相関係数 04 多重共線性(マルチコ) 05 単回帰分析での区間推定 06 ロジスティック回帰分析・プロビット回帰分析 07 一般線形モデルと一般化線形モデル(GLM) Column|ワインの値段を重回帰分析する Chapter 09 分散分析と多群比較法 Introduction 01 分散分析(概説) 02 一元配置の分散分析 03 二元配置の分散分析(繰り返しなし) 04 二元配置の分散分析(繰り返しあり) 05 フィッシャーの3原則 06 直交配列表 07 ボンフェローニ法・ホルム法 08 シェフェ法 09 テューキー―クレーマー法 Column|現代の推測統計学の祖・フィッシャー Chapter 10 多変量解析 Introduction 01 主成分分析(概説) 02 主成分分析(詳説) 03 判別分析(概説) 04 判別分析(詳説) 05 マハラノビス距離 06 数量化Ⅰ類・Ⅱ類 07 数量化Ⅲ類・コレスポンデンス分析 08 因子分析 09 共分散構造分析 10 階層的クラスター分析 11 多次元尺度構成法(MDS) Column|ポジショニングマップを作るには Chapter 11 ベイズ統計 Introduction 01 条件付き確率 02 ナイーブベイズ分類 03 ベイズの定理 04 ベイズ更新(離散版) 05 モンティ・ホール問題 06 ベイズ更新(連続版) 07 共役事前分布 08 カルバック―ライブラー情報量 09 AIC(赤池情報量規準) 10 モンテカルロ積分 11 ギブスサンプリング 12 メトロポリス―ヘイスティングス法 13 ベイジアンネットワーク Column|機械翻訳の仕組み Appendix 1 標準正規分布表(上側確率) 2 t分布表(上側2.5%点、5%点) 3 x2分布表(上側97.5%点、5%点、25%点) 4 F分布表(上側5%点) 5 F分布表(上側2.5%点) 6 マン―ホイットニーのU検定表(片側確率2.5%点) 7 ウィルコクソンの符号付き順位検定表(片側2.5%点、5%点) 8 フリードマン検定表(片側5%点) 9 クラスカル―ウォリス検定表(片側5%点) 10 スチューデント化された範囲の分布の表(上側5%点)
ディープラーニング活用なくしてビジネスの飛躍的成長なし ◆日本ディープラーニング協会推薦図書◆ 日本ディープラーニング協会 監修 ディープラーニングをビジネスに生かす知識を問われる 同協会のG検定(ジェネラリスト) 推薦図書 松尾豊・同協会理事長による「ディープラーニング技術年表」収録 ディープラーニングは確かに実際のビジネスに溶け込み、商品やサービスでの活用が始まっています。 それによって業績を向上させた企業もあれば、社会課題の解決に結びつけている会社も実在します。 その最先端の実践的な事例を紹介しました。本書に「実践編」と付したのはこうした理由からです。 本書の最大の特徴の1つが、「ディープラーニングビジネス活用アワード」の受賞6プロジェクト全てを子細なケーススタディで紹介していることです。 日本ディープラーニング協会と一緒に、2019年春から準備を進めてきたものです。 エントリーはやや大手企業に偏重したきらいはありましたが、まさに腕自慢の実力派ぞろいでした。 大賞のキユーピーの食品加工で原料を検査する「AI食品原料検査装置」に始まって、楽天の自動翻訳プロジェクトである「Rakuten Translate」、 荏原環境プラントが進める「ごみ焼却プラント運転自動化プロジェクト」、水処理など流体向けAI分析のAnyTechの「水質判定AI『DeepLiquid』」、 保育園向けITサービスのユニファの「写真自動判定システムによる保育士の業務負荷軽減」、パッケージデザインのプラグの「パッケージデザインの好意度スコアを予測するAIサービス」の6事例を本書にまとめました。 できるだけ載せないようにしたケースもあります。 ディープラーニングといえば画像認識とばかりに、熟練工の目の代替として活用する事例は少なくない。 ただその点だけを極めても、効果の最大値は当該人件費の削減分にしかなりません。 結果として幼稚園児の笑顔が増える、あるいは静脈産業の支えになる、 といった大きな社会的意義をディープラーニングには持たせたい。そんな思いで作りました。 受賞6事例を含めた計26事例を、本書ではディープラーニング活用の効果で4つに分けました。 まず「商品開発・業界構造を変える」。 次が「消費者のデマンドに応える」。 そして「働き方を改革する」。 最後が「不正・異常を検知、社会課題を解決する」。 また資料的価値が高い、日本ディープラーニング協会理事長の松尾豊氏がまとめた「ディープラーニング技術年表」そして「インターネットでいうと1998年」も収録。 全編にわたって同協会の理事が一文字ずつ、とりわけ技術的な側面からアドバイスしてくれた貴重な書である。ぜひご覧になっていただきたい。 ディープラーニング活用なくしてビジネスの飛躍的成長なし ◆日本ディープラーニング協会推薦図書◆ はじめに 【第1章】 ディープラーニングで付加価値高め こうして稼ぐ ―日本ディープラーニング協会 松尾豊理事長に聞く― 【第2章】 商品開発・業界構造を変える ●キューピー 食品原料の異物を画像認識で検査 食の安全守るため装置は同業に外販も ●プラグ パッケージデザインの消費者調査をAIで代替 商品開発のやり方 ガラリ変わる可能性 ●AnyTech 水処理施設からチョコレートまで 「流体」の品質・状態を簡単チェック ●NTTドコモ 店頭の商品を自動で認識 来店客の属性把握しPOSデータと連動で棚割り提案へ ●フジクラ 半導体部品をディープラーニングで検査 AIプラットフォーム構築し全社のIoT基盤に ●日本たばこ産業 コンビニのたばこ陳列を精度99%で認識 1013人超参加のコンテストで実現 ●トレタ 飲食店で売れ筋メニューが分析可能に ディープラーニングによるラベリング技術とは ●Sports Technology Lab スポーツ選手の動きをディープラーニングで分析 チーム強化から選手移籍まで ●ソフトバンク 5G×ディープラーニング 高品質画像でもリアルタイムぼかし加工 【第3章】 消費者のデマンドに応える ●楽天 ストレスなく外国語を話したい 海外動画配信サービスで培った翻訳技術を活用 ●ヤフー 安いガソリン、空いてる駐車場を近くで探したい ディープラーニングとドラレコで ●SMBC日興証券 株式ポートフォリオの組み替え方を知りたい 資産総額13倍になるカラクリ 【第4章】 働き方を改革する ●荏原環境プラント ごみ焼却施設で「熟練運転員の目」を代替 5倍の効率化を実現 静脈産業を途絶えさせない ●ユニファ 子供の「NG写真」をディープラーニングで自動排除 保育園の課題解決を支援 ●NTTデータジェトロニクス 社食食堂のレジで自動精算 人件費の削減、そして社員の満足度を高めて社内活性化へ ●モノフル トラックの人手不足問題に一石 ナンバーをAIで読み取り効率化 ●三菱総合研究所 財務諸表の数字を読み取り自動でリポート作成 シンクタンクの“夢”に一歩近づく ●ディー・エヌ・エー(DeNA) 交通事故の削減支援をサービス化 AIとデータサイエンスのタッグで ●イシダ ディープラーニングでパスタをつかむ AIと機械の“せめぎ合い”から生まれた新技術 ●AVILEN 鉄加工の図面を自動で読み解く 各種フォーマットの図面に対応 【第5章】 不正・異常を検知、社会課題を解決する ●リコー カメラ+AIで路面の老朽化診断 事務機器からの多角化で数千万円の受注 ●日本気象協会 降雨予測のメッシュと時間を詳細化 スパコンを使わず実現、ダム管理などに活用 ●日本取引所自主規制法人 株の不正取引“見せ玉”に待った 証券取引所の不正検知にAI導入世界初 ●misosil SNS広告でインフルエンサーの不正を暴く フォロワー水増しをAIで発見 ●トプコン 眼底画像から健康状態を読み解く デバイスのデータを加工する「センシングAI」とは? ●Ollo 月額3万円で顔認証システムが導入可能 エッジデバイスでの高速・高精度化を実現 【第6章】 先端技術の動向を知る おわりに
フリーソフトjs-STAR_XRが拡張され,ベイズ仮説検定にも新たに対応。データ分析から結果の書き方まで懇切にガイド。 「できる」から「わかる」へと読者の理解を体験的に導く,好評〈全自動〉シリーズ第2弾! フリーソフトjs-STAR_XRが拡張され,帰無仮説検定の代替案として近年関心が高まるベイズ仮説検定に新たに対応。巻末には半期や全7回の授業用シラバスを収載。データ分析からレポートの書き方まで,前著同様懇切にガイドする。 はじめに1:ベイズファクタと統計分析の学習法 はじめに2:シミュレーションによる主体的で深い学び Chapter0 事前準備 0.1 フリーウェア及び関連ファイルの準備 0.2 R画面の設定 Chapter1 1×2表のベイズファクタ分析 【演習1a】 みんなが好きなもの 1.1 データ入力・分析 1.2 『結果の書き方』 レポート例01-1 1.3 統計的概念・手法の解説1 ●ベイズファクタとは何か ●確率分布の尺度設定 ●95%確信区間推定 ●真の比率の範囲検定 【演習1b】 統計的仮説検定のシミュレーション 1.4 シミュレーションの操作手順 ●シミュレーションの基本操作 ●シミュレーションの応用操作 1.5 統計的概念・手法の解説2 ●ベイズファクタ分析のメリット ●二項検定のp値とBF値の比較 Chapter2 1×2表・母比率不等のベイズファクタ分析 【演習2a】 鶏肉は低温調理がおいしい 2.1 シミュレーションの操作手順 2.2 統計的概念・手法の解説1 ●p値とBF値の検定の仕組み 【演習2b】 新型ウイルスは従来型よりも危険か 2.3 データ入力・分析 2.4 『結果の書き方』 レポート例02-1 2.5 統計的概念・手法の解説2 ●ベイズファクタの事前設定問題 Chapter3 1×J表のベイズファクタ分析と対応のある度数の検定 【演習3a】 お昼に食べたいメニューは何か 3.1 データ入力・分析 3.2 『結果の書き方』 レポート例03-1 3.3 統計的概念・手法の解説1 ●多項分布によるBF値の計算 ●確信区間を用いた多重比較 3.4 自動評価判定1×2:統計的グレード付与 【演習3b】 道徳性に評価グレードを与える 3.5 純肯定率とグレードの付け方 3.6 自動集計検定2×2:連関の探索 【演習3c】 道徳性の項目間の関連を探索する 3.7 対応のある度数の検定:Q検定とMcNemar検定 【演習3d】 不支持の理由は集計するとダメ? レポート例03-2 3.7 統計的概念・手法の解説2 ●CochranのQ検定 ●McNemar検定 Chapter4 i×J表のベイズファクタ分析 【演習4a】 感受性が低い人は感情知能が働かない? 4.1 データ入力・分析 4.2 『結果の書き方』 4.3 標本タイプの選択 ●ポアソンタイプ:N =無作為,行・列=無作為 ●同時多項タイプ:N =固定,行・列=無作為 ●独立多項タイプ:行=固定,列=無作為 ●独立多項タイプの列組み:行=無作為,列=固定 ●超幾何タイプ:行・列=固定(2×2表のみ) レポート例04-1 4.4 統計的概念・手法の解説1 ●i×J表の事前確率分布 4.5 データセットraceDollsの分析:BF値の警報は誤報か 【演習4b】 黒人・白人の子どもは同人種の人形を好むか レポート例04-2 4.6 統計的概念・手法の解説2 ●Fisherの正確検定とBF値の検定 ●2×2表のp値とBF値の比較 4.7 ステレオタイプ効果と学習意欲 【演習4c】 ステレオタイプ効果で学習時間を延ばす レポート例04-3 Chapter5 t検定のベイズファクタ分析 【演習5a】 トレーニング法は分散法がよいか集中法がよいか 5.1 データ入力・分析 5.2 『結果の書き方』 5.3 統計的概念・手法の解説1 ●t値と効果量δ(delta) ●t検定のベイズファクタ分析の仕組み ●p値とBF値の検定結果の不一致 ●BF値を用いたノンパラメトリック検定 ●t検定のp値とBF値の比較 5.4 シミュレーション学習①:正規分布をつくる 【課題1〉正規分布をつくる 5.5 シミュレーション学習②:データを再現する 【課題2〉データを再現する 5.6 時間データの対数変換による分析 【演習5b】 トレーニングは伸び盛りに! レポート例05-1 5.7 統計的概念・手法の解説2 ●効果量δの範囲検定 Chapter6 1要因分散分析デザインのベイズファクタ分析 【演習6a】 SD法で創造性を高める 6.1 データ入力・分析 6.2 『結果の書き方』 レポート例06-1 6.3 統計的概念・手法の解説1 ●多重比較の早見表の利用 ●ベイズファクタ分析の仕組み:分散分析デザイン ●平均の95%確信区間 ●分散分析A sデザインのp値とBF値の比較 6.4 小学校英語指導に必要な技能は何か 【演習6b】 英語指導にどんな技能が必要か 6.5 『結果の書き方』 レポート例06-2 6.6 統計的概念・手法の解説2 ●参加者内デザインのベイズファクタ分析 Chapter7 2要因・3要因分散分析デザインのベイズファクタ分析 【演習7a】 協同経験はルール意識を高めるか 7.1 データ入力・分析 7.2 『結果の書き方』 レポート例07-1 7.3 統計的概念・手法の解説1 ●Inclusion BF:BF値のモデル平均化 ●全体モデル平均化 7.4 アイディア・プロダクション法 【演習7b】 アイディアの発想に“ 書き送り法”を用いる 7.5 『結果の書き方』 3要因デザイン レポート例07-2 7.6 統計的概念・手法の解説2 ●3要因デザインのBF値の平均化 7.7 シミュレーション学習①:2要因データを再現する 【課題1】 データの再現 7.8 シミュレーション学習②:交互作用を判別する 【課題2】 交互作用の判別 ●シミュレーションによる交互作用問題の解答要領 7.9 シミュレーション学習③:N,SDを変えてみる 【課題3】 N,SDを変える Chapter8 相関係数のベイズファクタ分析 【演習8a】 気温とアイスクリーム,ホットコーヒーの売り上げは相関するか 8.1 データ入力・分析 8.2 『結果の書き方』 8.3 統計的概念・手法の解説1 ●p値有意・BF値有効となる最小相関係数の比較 ●相関係数の差の検定 8.4 相関係数のシミュレーション学習 【演習8b】 シミュレーション課題①:散布図をつくる 【演習8c】 シミュレーション課題②:相関係数を予想する ●散布図問題の解答例 【演習8d】 シミュレーション課題③:外れ値のある散布図をつくる 8.5 統計的概念・手法の解説2 ●相関係数と説明率 Chapter9 回帰モデルのベイズファクタ分析 【演習9a】 革新性を高める職場風土とは? 9.1 データ入力・分析 9.2 『結果の書き方』 9.3 統計的概念・手法の解説1 ●初期モデルの選び方と独立変数の上限数 ●交互作用モデルの探索:ベイズ ファクタ回帰分析 ●BF値による回帰モデルの選出率 9.4 交互作用の単純傾斜分析 【演習9b】 明るさ×温かさの交互作用を分析する 9.5 『結果の書き方』 ステップワイズ回帰分析 レポート例09-1:単純傾斜分析の結果 9.6 統計的概念・手法の解説2 ●交互作用モデルの探索:ステップワイズ回帰分析 ●ベイズ情報量規準とベイズファクタ Chapter10 各種ユーティリティ 10.1 乱数発生ユーティリティ&乱数コマンド ●一様乱数コマンド unif(ユニフ) ●正規乱数コマンド norm(ノゥム) 10.2 階級化集計ユーティリティ 10.3 数値変換ユーティリティ 【練習問題1】 困難度の異なるテスト得点を標準化する 【練習問題2】 2ポイント尺度を4ポイント尺度に変換 【練習問題3】 3ポイント尺度を5ポイント尺度に変換 10.4 逆転項目処理ユーティリティ 10.5 欠損値処理ユーティリティ 付録 統計分析の授業用シラバス(参考例) シラバス参考例1 統計分析入門 シラバス参考例2 統計分析演習 索引 Column 1 セルへの数値入力の基本と小技 Column 2 分析結果の保存 Column 3 ダイアグラムで連関・相関を視覚的に表示 Column 4 スタック形式によるデータ入力 Column 5 平均のグラフとボックスプロットの利用 Column 6 シミュレーションボタンの使い方
最新のライブラリに対応!機械学習の基本を数式とプログラムを紐づけてしっかり学べる! Pythonプログラムを動かしながら機械学習の基礎をしっかり学べる! 【本書の目的】 人工知能関連サービスや商品開発において 機械学習の基礎知識が必要となります。 本書では数式とPythonプログラムをつなげて 機械学習の基礎をしっかり学ぶことができます。 【本書の特徴】 本書は、機械学習の原理を数式でしっかり理解し、 Pythonプログラムによってその理解を深めていくことができる書籍です。 ・数式とコードを連携して解説 ・学習内容を「要点整理」で復習 ・TensorFlow 2.7に対応 ・Python 3.9に対応 【読者が得られること】 機械学習のしくみとPythonプログラムを つなげて理解できます。 【対象読者】 機械学習の基礎を数学的な原理からプログラム実装までしっかり学びたい理工学生・エンジニア 【目次】 第 1 章 機械学習の準備 第 2 章 Pythonの基本 第 3 章 グラフの描画 第 4 章 機械学習に必要な数学の基本 第 5 章 教師あり学習:回帰 第 6 章 教師あり学習:分類 第 7 章 ニューラルネットワーク・ディープラーニング 第 8 章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第 9 章 教師なし学習 第10章 要点のまとめ 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ
「統計を使わずに、Rを純粋にプログラミング言語として学ぼう」というコンセプトに基づいて書かれた本書は、統計学の難しい知識がなくてもプログラミングの経験があまりなくても、プログラミングを学んでみようという意欲さえあれば読める、画期的な書籍です。サイコロを作る、ゲームで遊べるトランプを作る、スロットマシンを作る、という3つの簡単なプロジェクトに取り組む過程で、Rのプログラミング統合環境、RStudioを活用して、楽しみながら効率的にRのプログラミングスキルを身に付けていきます。統計だけに使うのはもったいない、Rのプログラミング言語としての隠れた魅力と可能性と、さらにはデータサイエンスの基礎としてのデータ分析を紹介します。 1部 プロジェクト1:ウェイトをかけたサイコロ(基本中の基本 パッケージとヘルプページ) 2部 プロジェクト2:トランプ(Rのオブジェクト Rの記法 値の書き換え 環境) 3部 プロジェクト3:スロットマシン(プログラム S3 ループ スピード) 付録
Python業界の第一線で活躍する執筆陣によるデータ分析エンジニアに求められる技術が最速で身に付く入門書 データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 はじめに 謝辞 本書の対象読者と構成について Chapter1 データ分析エンジニアの役割 1.1 データ分析の世界 1.2 機械学習の位置づけと流れ 1.3 データ分析に使う主なパッケージ Chapter2 Pythonと環境 2.1 実行環境構築 2.2 Pythonの基礎 2.3 Jupyter Notebook Chapter3 数学の基礎 3.1 数式を読むための基礎知識 3.2 線形代数 3.3 基礎解析 3.4 確率と統計 Chapter4 ライブラリによる分析の実践 4.1 NumPy 4.2 pandas 4.3 Matplotlib 4.4 scikit-learn Chapter5 応用:データ収集と加工 5.1 スクレイピング 5.2 自然言語の処理 5.3 画像データの処理 INDEX 奥付
さまざまな業界で導入が進められているAIについて、どのような分野で活用されているのかが鳥瞰図で一目でわかる AIの導入事例が一目でわかる! 金融、流通、製造、インフラなど全8業界36業種のAIの導入について、どのような分野で活用されているのか、 どのような事項との親和性が高いかといったことについて鳥瞰図で解説。豊富な実例も掲載しており、ビジネスのアイデア創出にも応用できます。 また、「こんな応用可能性があります」にとどめず、実際に実装したりトライアルをするときのノウハウも掲載しています。 本書掲載の鳥瞰図はご購入者特典としてDLして活用できます。 【本書に掲載されている業種】 〈流通〉 コンビニ・スーパーマーケット 百貨店業 郵便・運送業 〈製造〉 自動車製造業 食品・飲料製造業 化粧品・日用品製造業 金属製造業・化学工業 重工業 建設業 繊維工業(アパレル) 電機製造業 〈金融〉 銀行業 保険業 証券業 〈サービス〉 ホテル業 旅行代理業 外食業 テーマパーク 放送局 〈インフラ〉 通信業 鉄道業 航空業 空港 道路・交通インフラ管理業 エネルギー業(ガス・電気) 石油および天然ガス生産・販売業 〈公共〉 学校・学習塾 警察・警備 消防・防災 〈ヘルスケア〉 病院 介護サービス業 製薬業 〈その他〉 農業 水産業 スタジアム・(プロ/アマ)スポーツ ゲーム業 Chapter 1 流通 コンビニ・スーパーマーケット 百貨店業 郵便・運送業 詳細解説:商品需要予測に基づく在庫管理 Chapter 2 製造 自動車製造業 食品・飲料製造業 化粧品・日用品製造業 金属製造業・化学工業 重工業 建設業 繊維工業(アパレル) 電機製造業 詳細解説:査定自動化・見積り自動化 Chapter 3 金融 銀行業 保険業 証券業 詳細解説:不正検知 Chapter 4 サービス ホテル業 旅行代理業 外食業 テーマパーク 放送局 詳細解説:キャンペーン企画・価格設定 Chapter 5 インフラ 通信業 鉄道業 航空業 空港 道路・交通インフラ管理業 エネルギー業(ガス・電気) 石油および天然ガス生産・販売業 詳細解説:劣化予測・メンテナンス計画作成 Chapter 6 公共 学校・学習塾 警察・警備 消防・防災 詳細解説:画像データによる異常検知・品質評価 Chapter 7 ヘルスケア 病院 介護サービス業 製薬業 詳細解説:センサーデータによる異常検知 Chapter 8 その他 農業 水産業 スタジアム・(プロ/アマ)スポーツ ゲーム業 詳細解説:見込み顧客分析・離反分析
測度論に真正面から取り組み、確率論を深く理解することができます。 「測度論に真正面から取り組み、確率論を最大限理解する」 本書は、測度論に基づいた確率論を、深く、深く理解するための本です。 ・ルベーグ積分を用いて分布や期待値の計算ができる。 ・フビニの定理やディンキン族定理を証明の中で正しく使える。 これらができるようになって初めて、測度論に基づく確率論を深く理解できたといえます。そしてそのためには、具体的な計算に取り組み、定理の証明の1行1行を理解していく必要があります。 本書では、他書では割愛されがちな測度論の議論の細部に切り込みながら、確率論の基礎である「確率空間」「分布と期待値」「フビニの定理」「独立性」「特性関数」「独立性と極限の関係」「ブラウン運動の構成」を解説していきます。 確率微分方程式など、確率論の先にある理論を学習するための基礎固めとして、確かな地力を養うことができる一冊です。 第1章 プロローグ 第2章 確率空間 第3章 分布と期待値 第4章 フビニの定理 第5章 独立性 第6章 特性関数 第7章 独立性と極限 第8章 ブラウン運動の構成
理系学生伝説の参考書『物理数学の直観的方法』著者が、文系向けに難解な経済数学の要諦を斬新な切り口で分かりやすく解説する。 高度に発展した経済数学の本質を、70点に及ぶ図・グラフを中心に、直観的に理解していきます。本書では、「確率・統計編」として、正規分布曲線ができるメカニズムを学び、確率統計論で最も重要な原理とされる、中心極限定理の不思議に触れ、教養としてのブラック・ショールズ理論を身につけていきます。 現代社会を浮き彫りにする経済学。この経済学を表す経済数学は高度に発展してきました。なかでも、マクロ経済学の「動的マクロ均衡理論」と、金融工学の「ブラック・ショールズ理論」は「二大難解理論」として、その頂上をなしています。 この『経済数学の直観的方法』の2冊では、目標をこの「二大難解理論」にしぼっています。これらを直観的に理解してしまえば、そのツートップの頂上から経済数学全体を見渡す格好になり、今までのミクロ経済学などのたくさんの数学的メソッドを、余裕をもって見ることができるという狙いです。 本書では、「確率・統計編」として、現代の金融工学の礎となる「ブラック・ショールズ理論」を身につけます。70点に及ぶ図・グラフを中心に、「正規分布曲線が生まれるメカニズム」「標準偏差、分散の意味」「最小2乗法の基本思想」「中心極限理論の不思議」「確率過程とランダム・ウォーク」「ブラウン運動とブラック・ショールズ理論」「伊藤のレンマと確率微分方程式」「測度とルベーグ積分」など、重要テーマの本質的理解を試み、教養としてのブラック・ショールズ理論を身につけていきます。 第1章 初級編 1.確率統計を理解するための根本思想 2.われわれの世界の確率統計はどう成立したか 3.補足的な基礎知識 第2章 中級編 1.最小2乗法の本質 2.中心極限定理の不思議 3.ブラウン運動とブラック・ショールズ理論 4.教養としてのブラック・ショールズ理論 第3章 上級編 1.伊藤のレンマと確率微分方程式 2.実際のブラック・ショールズ理論 第4章 測度とルベーグ積分
データサイエンティストがどのようにデータと向き合っているのか、プログラミング言語を使わずにその思考過程を体験できます。 データサイエンティストはどのように考えるのか? 本書は、紙と鉛筆で学ぶというコンセプトのもと、 PythonやRなどのプログラミング言語を使わずに データサイエンティストの思考過程を体験できます。 データサイエンティストがどのような思考回路でデータと向き合っているのか、 本書掲載の40問のクイズを解きながら体験してみてください。 本書掲載のクイズは複雑な計算やExcelなども不要で、 紙と鉛筆さえあれば解くことができますので、ぜひチャレンジしてみてください。 【こんな方におすすめ!】 ・デジタル時代を生き抜くためにデータを読み解くスキルを身につけたい人 ・「データを使って論理的に考えろ」と言われるが、 データのどこを見ればよいのかわからない人 ・大学時代に政府が提唱するデータリテラシーを学ぶことができなかった人 ・大学でデータリテラシーを身につけた新入社員を受け入れる部署の管理職 ・社会でデータリテラシーがどう活用されているか知りたい人 ・データサイエンティストと仕事をすることになったが、 どのような思考回路の専門家なのか知りたい人 【本書を読むことで得られる知識/できるようになること】 ・データを活用するプロであるデータサイエンティストが どのような思考回路でデータに向き合っているかわかる ・データサイエンティストの思考過程を知る(なぞる)ことによって、 自分自身でデータを正しく読み解くことができるようになる ・データを読み解く際の勘所(着眼点)がわかる ・与えられたデータの意味を適切に読み解き、 他者に対して正しくデータを説明できるようになる ・恣意的に誇張されたグラフや不適切に切り取られたデータに騙されなくなる ・データ分析の考え方、留意事項がわかる ・データを分類する方法、データから法則を見つけ出す方法、予測する方法がわかる ・データを基に論理的に意思決定できるようになる 【目次】 第1章 デジタル時代に必要なデータリテラシー 第2章 データを読む力を身につける 第3章 データを説明する力を身につける 第4章 データを分類する力を身につける 第5章 データから法則を見つける力を身につける 第6章 データから予測する力を身につける 第7章 仕事でデータリテラシーを活用する 第1章 デジタル時代に必要なデータリテラシー 1-1 デジタル時代の到来 1-2 データリテラシーはこれからのビジネスパーソンに必須のスキル 1-3 データリテラシーを身につけよう 第2章 データを読む力を身につける 2-1 考えながらデータを読もう! クイズ1:目的に即したデータの見方について学ぶ クイズ2:データの特徴や傾向の見方について学ぶ クイズ3:データの着眼点について学ぶ 2-2 全体の傾向をつかもう! クイズ4:平均値・最頻値・中央値の算出方法について学ぶ クイズ5:代表値とデータ分布の関係について学ぶ 2-3 データの細部を確認しよう! クイズ6:外れ値・異常値について学ぶ 2-4 データの関係性を読み解こう! クイズ7:2つのデータの関係性について学ぶ クイズ8:相関と因果について学ぶ 第3章:データを説明する力を身につける 3-1 データを可視化してみよう! クイズ1:適切なグラフ表現について学ぶ クイズ2:不適切なグラフ表現について学ぶ 3-2 データを比較するとは? クイズ3:適切な比較対象の設定について学ぶ クイズ4:ある時点との比較について学ぶ クイズ5:他者との比較について学ぶ 3-3 データから課題を見つけ出す! クイズ6 〜9:データから課題を見つけ出す手順について学ぶ 第4章:データを分類する力を身につける 4-1 特徴の似たデータでグループを作ろう! クイズ1:データをグループに分ける意義について学ぶ クイズ2:データ間の距離について学ぶ クイズ3:距離計算する際の注意事項について学ぶ 4-2 目的に応じてデータを分類しよう! クイズ4:データを分類するための観点について学ぶ 4-3 データを機械的に分類しよう! クイズ5:グループの重心について学ぶ 4-4 データの分類を体験しよう! クイズ6 〜8:データを分類する手順について学ぶ 第5章:データから法則を見つける力を身につける 5-1 データから法則を見つけ出す! クイズ1:データから法則を見つけ出す方法について学ぶ クイズ2:見つけ出した法則を適用する方法について学ぶ 5-2 判別問題を解く決定木モデル クイズ3:決定木モデルの作り方について学ぶ クイズ4:決定木モデルを用いて結果を推測する方法について学ぶ 5-3 判別問題の精度を評価してみよう! クイズ5:判別問題の評価方法について学ぶ 5-4 決定木モデルを活用してみよう! クイズ6:データから法則を見つけ出し判別問題を解く手順について学ぶ 第6章:データから予測する力を身につける 6-1 数値データの関係性を確認しよう! クイズ1:数値データの関係性を確認する方法について学ぶ クイズ2:数値データの関係性を絞り込めない場合について学ぶ クイズ3:数値以外のデータとの関係性を確認する方法について学ぶ 6-2 内挿と外挿に注意しよう! クイズ4:データから予測する際に注意すべき内挿と外挿について学ぶ 6-3 データの偏りに注意しよう! クイズ5:データに偏りがある場合の注意事項について学ぶ 6-4 時間の変化に着目しよう! クイズ6:時系列データのトレンドと周期性について学ぶ 6-5 データから予測しよう! クイズ7 〜9:データから予測する手順について学ぶ 第7章 仕事でデータリテラシーを活用する 7-1 データを読む力を活用する 7-2 データを説明する力を活用する 7-3 データを分類する力を活用する 7-4 データから法則を見つける力を活用する 7-5 データから予測する力を活用する
これからAIを学ぶ人に向けた入門書。ビジネスへの活用法から最新技術までをカバーした、「最初に手にすべきAI本」 本書は、これから人工知能(AI)を学びたいと考える人に向けたAIの入門書です。エンジニアではない人、すなわち中高生や文系学部の大学生、文系出身のビジネスパーソンや経営者などでも理解できるように、分かりやすくAIの本質や基礎知識を解説しました。AIのビジネスへの活用法からAIの最新技術までをカバーした、「最初に手にすべきAI本」です。 著者は、日本経済新聞社や日経BPのセミナーでAIやIoTの講座を教える人気講師。フジテレビの「ホンマでっか!?TV」に評論家として出演もしています。語り口が初心者にも分かりやすいと定評のある著者が、必要最低限のポイントに絞り、できる限り専門用語を使わないように配慮しながら書き上げました。 初心者でも人工知能の本質を短時間で理解できるようにするために、それぞれの状況や理解度に応じて学習できるように3部に分けて構成しています。 第1部(第1章)は「基礎編」です。ここでは、今後、人工知能が中心となる社会で生きていくために必要最低限の知識についてまとめました。人工知能は何が得意で、何が不得意なのか、そして社会をどう変えていくのかについて解説しています。 第2部(第2~4章)は「ビジネス編」です。ここでは、ビジネスに人工知能を活用するに当たり、各業界の活用事例や今後どのような使われ方をするのかについて書いています。 また、人工知能を活用する際の注意事項を中心に、プロジェクト推進方法や国などの支援状況についても解説しています。 第3部は「技術編」です。ここでは、人工知能の仕組みについて解説しています。今後、データサイエンスや人工知能に関する知識は、エンジニアや人工知能のプロジェクトに関わる人にとっては必須の知識です。 本書を読めば、AIに関する一般向けの本にありがちな曖昧すぎてよく分からない、なぜそこにAIを使う必要があるのか理解できないといった疑問を解消できると思います。 第1章【基礎編】人工知能(AI)の世界 第2章【ビジネス編】産業別に見た人工知能事例と未来予想図 第3章【ビジネス編】人工知能活用に関する国の施策 第4章【ビジネス編】人工知能プロジェクトの進め方と注意点 第5章【技術編】機械学習 ~これまでの人工知能と歴史~ 第6章【技術編】ディープラーニング ~現在の人工知能~ 第7章【技術編】人工知能開発と運用管理 第8章【技術編】人工知能の最新技術 ~これからの人工知能~ 第9章 人工知能開発に関するいろいろなFAQ
TensorFlowの機能を組み合わせて実践的な深層学習モデルを構築しよう!ニューラルネットワークの基礎、CNNやRNNはもちろん、転移学習を用いたキャプション生成までを1冊に凝縮。データ整形からモデル構築までをステップ・バイ・ステップで解説。 第1章 ニューラルネットワークと深層学習(機械学習 教師あり学習・教師なし学習 ほか) 第2章 TensorFlow入門-計算グラフと手書き数字認識(TensorFlowとは? 計算グラフとDefine and Run ほか) 第3章 TensorFlowをもう少し入門-TensorBoard、CNN、モデルの保存(可視化ツールTensorBoard TensorBoardの見方 ほか) 第4章 TensorFlowでRNN-時系列情報および自然言語の扱い(Recurrent Neural Network TensorFlowにおけるRNN実装 ほか) 第5章 TensorFlowでニューラルイメージキャプショニング(画像キャプショニング 画像キャプショニングのためのデータセット ほか)
もう数式はコワくない! 身近で面白い題材を使って,統計学の基礎知識・手法をていねいに伝授する.社会の「姿」はこうして暴け. データ集め(社会調査),データの整理,分析,…….社会調査に携わるすべての人が知っておくべき統計学の基礎を,懇切ていねいに解説する.親しみやすい題材に触れながら,調査研究に必要となる知識・手法を身につけよう.一見難しい数式も,その意味を言葉で説明しているので,数式アレルギーを克服できる! 【主な内容】 第0章 イントロダクション 第I部 コア 第1章 データを集める 第2章 データをまとめる 第3章 関連を捉える 第4章 関連を疑う 第5章 データから推測する 第6章 データから確かめる 第II部 理論 第7章 コイントスで社会を見る 第8章 集まったデータを表現する 第9章 推定が満たすべき条件 第III部 手法 第10章 社会の下流化は起こっているか 第11章 継承される格差を検討する 第12章 世界の男性の家事事情 第13章 年収と年齢の関係 第14章 ワイン評論家を出し抜く方法 第IV部 終わりに 第15章 統計学の応用とこれから
名著をリニューアル! あなたの課題に適したモデルをつくる、評価する、改良する、すべての段階に必要なことがこの1冊に。 ◆◆ロングセラー、10年ぶりの改訂◆◆ ・全ページをフルカラー化したので、図表もさらにわかりやすく! ・非定常時系列データ解析の基本を加筆(第8章を新設) データの見方や考え方から述べられた本当にほしかった入門書。 それぞれがもつ「予測したい」課題に自ら取り組むための基本を1冊にまとめた。 「モデリングが使えるということはわかった、これからは使いたい!」という人は必読。 統計のプロ中のプロが伝授する「匠の技」「匠の知恵」コラムも多数収録。 【推薦の言葉】 本書は予測のための統計的モデリングの方法を,基礎から具体的実践例に亘るまで明快に解説している特色ある著作である. 平易な記述でベイズの定理などの基礎から粒子フィルタやデータ同化などの先端的な内容までをカバーしている. 便利なブラックボックス型のAI予測では飽き足らず,自分が抱える具体的な課題に対して自らのアイデアを投入し,説明可能な予測をしてみようと思い立った人には必読の書である. ――北川 源四郎先生(東京大学特任教授、数理・データサイエンス教育強化拠点コンソーシアム 議長) 【まえがき(抜粋)】 統計学の強みは,生成モデルの構築に関する,さまざまな知見とノウハウの蓄積,またモデルに基づく意思決定の綿密な評価にある.ある種,モデリングに関する匠の技とも言える暗黙知に,統計学の存在感が増していくであろう.読者が本書を通じてこの暗黙知を習得されることを期待したい. 【目次】 〈基礎編〉 第1章 予測とは何かを考える 第2章 確率による記述:基礎体力をつける 第3章 統計モデル:予測機能を構造化する 第4章 計算アルゴリズム1:予測計算理論を学ぶ 〈展開編〉 第5章 計算アルゴリズム2:モデルを進化させる 第6章 粒子フィルタ:予測計算を実装する 第7章 乱数生成:不確実性をつくる 〈実践編〉 第8章 時系列解析の基本:傾向をつかむ 第9章 経験知の総結集:売上予測の精度を上げる 第10章 データ同化:シミュレーションの予測性能を向上させる 第11章 確率ロボティクス:お掃除ロボをつくる 〈基礎編〉 第1章 予測とは何かを考える 1.1 居酒屋の売上高の予測 1.2 期待感を数式で表す 1.3 パターンの表現 第2章 確率による記述:基礎体力をつける 2.1 確率の基礎 2.2 最適化問題から統計モデルへ 第3章 統計モデル:予測機能を構造化する 3.1 状態空間モデル 3.2 鎖状構造グラフィカルモデル 3.3 多次元ノイズの分布モデル 第4章 計算アルゴリズム1:予測計算理論を学ぶ 4.1 事後周辺分布 4.2 非線形フィルタリング 4.3 平滑化アルゴリズム 4.4 状態ベクトルの推定と予測誤差 〈展開編〉 第5章 計算アルゴリズム2:モデルを進化させる 5.1 状態ベクトルの拡大 5.2 学習によるモデルの改良 第6章 粒子フィルタ:予測計算を実装する 6.1 分布の近似 6.2 アルゴリズム 6.3 粒子フィルタの図説 第7章 乱数生成:不確実性をつくる 7.1 リサンプリングの実装 7.2 システムノイズの生成法 7.3 賢いリサンプリング 7.4 粒子フィルタの実装例 〈実践編〉 第8章 時系列解析の基本:傾向をつかむ 8.1 定常と非定常:非定常の特徴を目で確認する 8.2 定常化:原データにいろいろな操作を加える 8.3 非定常成分の抽出:シンプルな状態空間モデルを非定常データに適用する 第9章 経験知の総結集:売上予測の精度を上げる 9.1 観測モデル:データを徹底的に要素に分解する 9.2 勘と経験をとり込む 9.3 外生変数の影響を柔軟に表現する 9.4 状態空間モデルにまとめる 9.5 結果 第10章 データ同化:シミュレーションの予測性能を向上させる 10.1 シミュレーション計算 10.2 データ同化の状態空間モデルへの埋め込み 10.3 逐次データ同化 第11章 確率ロボティクス:お掃除ロボをつくる 11.1 自己位置推定問題 11.2 一般状態空間モデル表現 11.3 実際の適用
数理統計学とRの使い方を同時にマスター.既に刊行している「一変量統計編」の続刊.数理統計学とRをより実践的に活用できるよう工夫を凝らした書. 目 次: 第1章 分割表の検定(1) 1.1 統計で用いられるデータの種類 質的データ/量的データ 1.2 適合度検定 1.3 適合度検定をやってみる 1.4 カイ二乗統計量 1.5 尤度比検定 1.6 カイ二乗検定の数学的仕組み 1.7 章末問題 第2章 分割表の検定(2) 2.1 分割表の独立性の検定 2.2 2×2分割表 イエーツの補正/一般的な2×2分割表のカイ二乗値 2.3 母比率の差の検定 2標本の比率の検定の数学的原理 2.4 フィッシャーの正確検定 フィッシャーの正確検定の計算原理 2.5 独立性の検定が役に立つ場合 2.6 残差分析 2.7 章末問題 第3章 単回帰分析 3.1 散布図を近似する直線を求める 回帰直線の当てはまりのよさ/最小二乗法と最尤推定との関係 3.2 Rにおける決定係数 定数項(切片)を0とした場合 3.3 説明変数と被説明変数の取り方で回帰直線が変わること 3.4 外れ値の影響 3.5 章末問題 第4章 赤池情報量基準によるモデル選択 4.1 cars再考 4.2 AIC (赤池情報量基準) 4.3 AICについて カルバック=ライブラー情報量/正規分布に対する KL情報量 4.4 AICの導出の概略 4.5 KL情報量の性質についての補足 4.6 章末問題 第5章 線形モデル 5.1 線形モデルの定式化 5.2 最小二乗推定パラメータの性質 5.3 分散σ2の不偏推定量 5.4 母数の検定 5.5 ^α, ^β の分布を見る 5.6 章末問題 第6章 曲線の当てはめ 6.1 lmを用いた曲線当てはめがうまくいく場合 6.2 lmによる当てはめが使えない場合-非線形最小二乗法 6.3 nls関数に関するいくつかの注意 6.4 変数変換と直線回帰を組み合わせる方法 両対数グラフが直線的な場合/より複雑な変換を必要とする場合 6.5 章末問題 第7章 重回帰分析 (1) 7.1 ワインの価格を予想する 7.2 重回帰分析の原理 7.3 分析例 7.4 Excelファイルのデータを読み込む 7.5 章末問題 第8章 重回帰分析 (2) 8.1 多重共線性とは何か 8.2 多重共線性の数学的仕組み 8.3 多重共線性のシミュレーション例 8.4 正しく推定できる場合 8.5 交互作用 交互作用の例 8.6 ダミー変数 8.7 章末問題 第9章 一般化線形モデルの基礎 9.1 一般化線形モデルの定義 条件付き期待値/一般化線形モデルの概要 9.2 指数型分布族 指数型分布族の期待値と分散 9.3 フィッシャー情報行列 9.4 一般化線形モデルのパラメータ最尤推定 9.5 スコア関数の具体的な形 9.6 残差逸脱度 9.7 章末問題 第10章 二項選択モデル 10.1 二項選択モデルの考え方 10.2 ロジスティックモデルとプロビットモデル 10.3 ロジスティックおよびプロビット回帰分析の例 ロジットモデルとプロビットモデルの母数の推定値 10.4 より複雑なモデルへの適用 10.5 章末問題 第11章 計数データへの一般化線形モデルの適用 11.1 ポアソンモデル 11.2 ポアソンモデルの適用例 11.3 負の二項分布モデル 負の二項分布/warpbreaks 11.4 章末問題 第12章 多変量正規分布とその応用 12.1 多変量の正規分布 12.2 集中楕円 集中楕円を描いてみる 12.3 集中楕円と分散共分散行列の固有値の関係を確認する 相関係数の区間推定/二次元正規乱数の応用 12.4 相関のない二次元正規分布に対する t0の分布 相関係数の区間推定の数学的原理 12.5 章末問題 第13章 主成分分析 13.1 主成分分析の考え方 13.2 Rによる主成分分析 13.3 USArrestsを用いた分析例 13.4 章末問題 第14章 分散分析と多重比較入門 14.1 三群以上の比較問題 平均点に差があるか?/データの様子を調べる/Rによる一元配置分散分析 14.2 一元配置分散分析の数学的原理 全変動の分解公式/F分布 14.3 多重比較 ボンフェローニの方法/ホルムの方法/チューキーの方法 14.4 二元配置分散分析 14.5 章末問題
最適化、確率・統計などの基本的な計算から、ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までを丁寧に解説! ◆◆数式とコードの距離が近いJuliaで一生モノの考え方を身につけよう!◆◆ 線形代数、微積分、最適化、確率・統計の基本的な計算から、 ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までをていねいに解説! [サポートページ] https://github.com/sammy-suyama/JuliaBayesBook [主な内容] 第1章 Juliaの基礎 1.1 Juliaとは 1.2 基本文法 1.3 パッケージの利用 1.4 グラフの描画 第2章 数値計算の基礎 2.1 ベクトル・行列計算 2.2 統計量の計算 2.3 統計量と確率分布のパラメータ 2.4 微分計算 2.5 関数の最適化 2.6 最適化によるカーブフィッティング 2.7 積分計算 第3章 確率計算の基礎 3.1 表を使った確率計算 3.2 式を使った確率計算 3.3 連続値における周辺分布と条件付き分布 3.4 確率的試行のシミュレーション 第4章 確率分布の基礎 4.1 確率分布とは 4.2 Juliaでの確率分布の扱い(Distributions.jl) 4.3 離散型確率分布 4.4 連続型確率分布 4.5 統計モデルの設計 第5章 統計モデリングと推論 5.1 ベルヌーイモデル 5.2 線形回帰 5.3 ロジスティック回帰モデル 第6章 勾配を利用した近似推論手法 6.1 なぜ勾配を利用するのか 6.2 ラプラス近似 6.3 ハミルトニアンモンテカルロ法 第7章 発展的な統計モデル 7.1 ポアソン回帰 7.2 階層ベイズモデル 7.3 状態空間モデル 第1章 Juliaの基礎 1.1 Juliaとは 1.2 基本文法 1.3 パッケージの利用 1.4 グラフの描画 第2章 数値計算の基礎 2.1 ベクトル・行列計算 2.2 統計量の計算 2.3 統計量と確率分布のパラメータ 2.4 微分計算 2.5 関数の最適化 2.6 最適化によるカーブフィッティング 2.7 積分計算 第3章 確率計算の基礎 3.1 表を使った確率計算 3.2 式を使った確率計算 3.3 連続値における周辺分布と条件付き分布 3.4 確率的試行のシミュレーション 第4章 確率分布の基礎 4.1 確率分布とは 4.2 Juliaでの確率分布の扱い(Distributions.jl) 4.3 離散型確率分布 4.4 連続型確率分布 4.5 統計モデルの設計 第5章 統計モデリングと推論 5.1 ベルヌーイモデル 5.2 線形回帰 5.3 ロジスティック回帰モデル 第6章 勾配を利用した近似推論手法 6.1 なぜ勾配を利用するのか 6.2 ラプラス近似 6.3 ハミルトニアンモンテカルロ法 第7章 発展的な統計モデル 7.1 ポアソン回帰 7.2 階層ベイズモデル 7.3 状態空間モデル
プログラミングをはじめるならPythonで決まり! やさしい説明で確かな力がしっかり身につく!トコトン親切な入門書 プログラミングを最初に学ぶなら、シンプルでわかりやすいPython(パイソン)が最適! Pythonは簡潔な文法で、話題のAIやデータ分析、仕事の自動化まで高度なことが実現できるプログラミング言語です。 本書は、初心者の方へ画面に打ち込む最初の1文字から丁寧に解説したPythonの入門書を、さらに分かりやすく改訂しました。 つまずきやすい点も丁寧に、一歩ずつ説明しているので挫折させません。 楽しいサンプルでプログラムの基本をやさしく学びながら、Webスクレイピングや、アプリ作成まで習得できます。 対象読者 ・はじめてプログラミングを学ぶ方 ・Pythonの基礎知識を身につけたい方 Chapter1 イントロダクション Chapter2 Pythonプログラミングをはじめよう Chapter3 プログラミングの基本編 仕組みを使おう Chapter4 プログラミングの応用編 効率的に作ろう Chapter5 プログラムからファイルを読み書き Chapter6 さまざまな機能を取り込もう Chapter7 アプリケーションを作ろう 付録 Appendix1 トラブルシューティング エラー Appendix2 本書の次のステップ
最短経路で平易に理解できる、今までにない入門書!「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。 最短経路で平易に理解できる、今までにない入門書! ベイズ主義機械学習(ベイズ学習)の基本原理にのっとり、「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。どこまでも分かりやすい! 【主な内容】 1 機械学習とベイズ学習 2 基本的な確率分布 3 ベイズ推論による学習と予測 4 混合モデルと近似推論 5 応用モデルの構築と推論 【機械学習スタートアップシリーズ】 本シリーズは、「機械学習ブーム」の先駆けとして2015年から刊行されている『機械学習プロフェッショナルシリーズ』の弟分的な存在を目指す、注目の新シリーズです。 「機械学習をもっと身近に、機械学習をもっとわかりやすく!」を合言葉に、より丁寧な記述で、基本的なテーマを解説していきます。 まず、以下の2点を同時に刊行いたします(^o^)/ 『これならわかる深層学習入門』瀧 雅人・著 『ベイズ推論による機械学習入門』須山 敦志・著/杉山 将・監修 第1章 機械学習とベイズ学習 機械学習とは/機械学習の代表的なタスク/機械学習の 2 つのアプローチ/確率の基本計算/グラフィカルモデル/ベイズ学習のアプローチ 第2章 基本的な確率分布 期待値/離散確率分布/連続確率分布 第3章 ベイズ推論による学習と予測 学習と予測/離散確率分布の学習と予測/1次元ガウス分布の学習と予測/多次元ガウス分布の学習と予測/線形回帰の例 第4章 混合モデルと近似推論 混合モデルと事後分布の推論/確率分布の近似手法/ポアソン混合モデルにおける推論/ガウス混合モデルにおける推論 第5章 応用モデルの構築と推論 線形次元削減/非負値行列因子分解/隠れマルコフモデル/トピックモデル/テンソル分解/ロジスティック回帰/ニューラルネットワーク
広がるAI化格差と5年先を見据えた企業戦略 ▼技術から利用動向、制度政策に至るまで、国内と海外の人工知能の最新動向がすべてわかるAI白書の2020年版 DX(デジタルトランスフォーメーション)のための重要な技術であるAIの社会実装が進む一方、そのAI化で格差が広がっています。また、5Gのサービス開始、EU一般データ保護規則、米中間の対立など、AIを取り巻く環境は目まぐるしく変化しています。 第1章では、石角友愛氏(パロアルトインサイトCEO)と中島秀之 AI白書編集委員長(札幌市立大学理事長・学長)の対談、北野宏明 AI白書編集委員(ソニーコンピュータサイエンス研究所代表取締役社長・所長)と片岡 晃 IPA社会基盤センター長の対談を通じて、AIをめぐる日本の課題とビジネス戦略について解説。第2章「技術動向」では、AIに関する技術の概要と最新動向を整理し、第3章「利用動向」では国内外でのAI活用事例を紹介。さらに、AIの社会実装を支える環境として、第4章で「制度政策」、第5章で社会実装に係る課題解決の方向性(AI人材育成及びスタートアップエコシステム)について記載しています。 『AI白書2019』に最新情報を加え、大幅にアップデートしています。AIの基礎的な技術解説から、国内外の多様な導入事例、制度・政策面での取り組み、中国のAI動向データ、企業経営者の意識調査結果まで、AIにまつわる幅広い話題を網羅して収録。AIを実装し、DXを推進するにあたってのひとつの指針として、本書をご活用いただけます。 DX(デジタルトランスフォーメーション)のための重要な技術であるAIの社会実装。そのAI化で格差が広がっている。AIの技術や利用動向、制度政策、スタートアップエコシステムに至るまで、AIのすべてを解説 □第1章「2020年のAIとビジネス」 生産性やDXといった日本の課題、AI時代のビジネス戦略をテーマにした対談、など □第2章「技術動向」 AIを支える技術と最新動向、ディープラーニング、開発基盤、標準化・オープンプラットフォーム・信頼性、各国の研究開発の現状、など □第3章「利用動向」 日本と世界の分野別の利用動向、AI利用動向アンケート調査、AI導入予算・AI市場規模、中国のAI最新動向、など □第4章「制度政策動向」 AIに関する原則・ガイドライン、制度改革(モビリティ、データ流通、知的財産)、各国の政策動向、など □第5章「AI実装を推進するAI人材育成と地域スタートアップエコシステム」 スタートアップエコシステム、AI人材の育成、社会実装の課題と現状、など
流行のデータサイエンス、何を知っていたらいいのか? いざという時のビジネスパーソン必携書。 本書では、4種の科学的論理思考法である演繹推論、帰納推論、アブダクション、データ科学推論について紹介。いざという時のためのビジネスパーソン必携書。(発行=BOW&PARTNERS)
超柔軟なベイズ的回帰モデルであるガウス過程の日本初の入門書。基礎の線形回帰から始め、ガウス過程の原理をゼロからていねいに解説 圧倒的に柔軟なベイズ的回帰モデルであるガウス過程の日本初の入門書。基礎の線形回帰から始め、ガウス過程の原理をゼロからていねいに解説。教師なし学習、実応用など最近の話題まで紹介した。さあ、はじめよう! 圧倒的に柔軟なベイズ的回帰モデルであるガウス過程の日本初の入門書。 基礎の線形回帰から始め、ガウス過程の原理をゼロからていねいに解説。 教師なし学習、実応用など最近の話題まで紹介した。 さあ、はじめよう! 【おもな内容】 第0章 たった5分でガウス過程法が分かってしまう 第1ステップ:機械学習って何? 第2ステップ:回帰と最小二乗法 第3ステップ:確率モデリングとベイズ推定 第4ステップ:ガウス分布と共分散 第5ステップ:ガウス過程とガウス過程回帰 コラム:関数の雲とガウス過程 第1章 線形回帰モデル 単回帰 重回帰とベクトル表現 線形回帰モデル リッジ回帰 コラム:相関係数と回帰モデル 第2章 ガウス分布 ガウス分布とは 重みの事前分布とリッジ回帰 多変量ガウス分布 第3章 ガウス過程 線形回帰モデルと次元の呪い ガウス過程 ガウス過程とカーネル ガウス過程回帰モデル ガウス過程回帰のハイパーパラメータ推定 ガウス過程回帰の一般化 第4章 確率的生成モデルとガウス過程 確率変数と確率的生成モデル 最尤推定とベイズ推定 確率分布の表現 コラム:ブラウン運動とガウス過程 第5章 ガウス過程の計算法 ガウス過程回帰の計算コスト 補助変数法 変分ベイズ法と確率的勾配法 格子状補助入力点配置に基づくガウス過程法計算 第6章 ガウス過程の適用 クリギングと空間統計学 ベイズ最適化 第7章 ガウス過程による教師なし学習 ガウス過程潜在変数モデル (GPLVM) ガウス過程潜在変数モデルの性質 ガウス過程潜在変数モデルの拡張 潜在的ガウス過程のサンプリング 第0章 たった5分でガウス過程法が分かってしまう 第1章 線形回帰モデル 第2章 ガウス分布 第3章 ガウス過程 第4章 確率的生成モデルとガウス過程 第5章 ガウス過程の計算法 第6章 ガウス過程の適用 第7章 ガウス過程による教師なし学習
AIに仕事を奪われる前に、AIを使って自分の仕事をつくるための一冊。文系ビジネスマンに生き抜く自信をつけさせる一冊。 AI社会になって、ボクは職を失わないだろうか? 文系のワタシが、AIでキャリアアップするには? そんな不安や疑問を解消するのが本書です。 英数国理社×AI時代に対応した、AI活用の現場から生まれた実践トレーニング本。 ・専門用語は必要最低限に ・豊富な業種別事例は「自社での活用」を考えるヒントに。 ・AIとの「共働きスキル」を身につける。 AIを活用したビジネスプランを豊富に紹介。本書は、AIを、機能別に4分類、役割別に2分類し、合計4×2=8分類にわけている。その分類を用いて、事例を解説しているので、非常に理解しやすく、自分の仕事への適用・応用を検討しやすい。AIとお共働きスキルを身につけよう。 はじめに 文系AI人材になろう! 第1章 AI社会で職を失わないために 「AI失職」を恐れず「AI職」に就く準備を 「AIとの共働き」スキルを身につけよう 5つの「共働きスタイル」 第2章 文系のための AIキャリア AIは「作る」から「使う」へ 上手に活用する「文系 AI人材」が重要に 「文系AI人材」の仕事内容とは? 「文系AI人材」になるための4つのステップ 第3章 AIのキホンは丸暗記で済ます AI/機械学習/ディープラーニングの違い 学習方式の3分類--教師あり/教師なし/強化学習 活用タイプ別AIは4×2=8分類 「識別系AI」はこう使う 「予測系AI」はこう使う 「会話系AI」はこう使う 「実行系AI」はこう使う 出る順でAI基礎用語を丸暗記する 第4章 AIの作り方をザックリ理解する AIは特徴づかみの名人 「予測系AI」の作り方を理解する 「識別系AI」の作り方を理解する 「会話系AI」の作り方を理解する 「実行系AI」の作り方を理解する 第5章 AI企画力を磨く AI企画の「100本ノック」 「変化量と実現性」を担保する AI企画の「解像度を上げる5W1H」 第6章 AI事例をトコトン知る――業種別×活用タイプ別の45事例集 第7章 文系AI人材が社会を変える AIによる「消費者、会社、働き手」への変化 AI社会を牽引するアマゾン AI×各業界で変革を作るソフトバンク 日本の銀行で起きているAIによる変化 文系AI人材が社会をリードする おわりに
経済学向けの入門書にはない「心理学」のための具体例を紹介! コードも豊富ですぐ試せる。次世代の心理学研究者、必携の入門書! リアルタイムで変化する、状況・思考・感情を捉える! 経済学向けの入門書にはない「心理学」のための具体例を紹介! ●人々のSNS投稿から睡眠時間の周期を調べる ●気分と活動量の経時的な変化を捉える ●行動が変化する瞬間を見つけ出す もちろん、Rの基礎からサポート。 サンプルコードも豊富ですぐに試せる! 心理学研究者、必携の入門書! (まえがきより抜粋) 本書は、「心理学の研究テーマで時系列データの分析をしてみたい」と考えている方に向けた入門書です。人間の行動や認知を時系列的に捉えたデータを収集・分析してみたいものの、どんな分析方法があるのか見当がつかなかったり、時系列データ分析にはどのような注意点があるのかがわからなかったりする方々への、最初のガイドになるよう心がけました。 心理学の研究をしていれば,ある瞬間だけを切り出したデータではなく、日常生活の中で刻一刻と変化し続ける人間の行動や認知を捉えてみたい、と考えることがあると思います。私自身も、人の一生分の行動データをすべて集めることができたらどんなに楽しいだろう、と夢想することがあります。現在では、スマートフォンなどのデバイスを使えば、人間のその時々の状況や思考、感情、行動などをリアルタイムで記録することも難しくはなくなってきました。時系列データを収集するハードルは、かつてないほど下がっているといえるでしょう。 一方で、時系列データを分析するための方法論は、どこから手を付けていいのかわかりにくいものです。がんばってコツコツとデータを集めてみたものの、時系列のリッチな情報をうまく活用できず、そのままお蔵入りになってしまうこともしばしばです。 本書の目標は、せっかく測定した貴重な時系列データをお蔵入りにしてしまわないことです。そのために、本書では移動軌跡や体の動き、SNS の書き込みのように、できるだけ人間の具体的な行動のデータを取り上げました。 (目次) 第1章 心理学と時系列データ分析 第2章 時系列分析の基本操作 第3章 時系列の回帰分析 第4章 RStanによる状態空間モデル 第5章 時系列データ同士の関係の評価 第6章 多変量時系列データの要約 第1章 心理学と時系列データ分析 第2章 時系列分析の基本操作 第3章 時系列の回帰分析 第4章 RStanによる状態空間モデル 第5章 時系列データ同士の関係の評価 第6章 多変量時系列データの要約
機械学習とは,コンピュータに学習能力を持たせるための方法論を研究する学問の名称であり,もともとは人工知能分野の一部として研究されていた。その後,機械学習は統計学と密接な関わりを持つようになり,「統計的学習」として独自の発展の道を歩み始めた。そして,1990年代から現在に至るまでの計算機やインターネットの爆発的な普及と相まって統計的学習の技術は目覚ましい発展を遂げ,いまや情報検索,オンラインショッピングなど,われわれの日常生活とは切り離すことのできない情報通信技術の根幹を支える重要な要素技術の一つとなった。 本書は,このような発展著しい統計的学習分野の世界的に著名な教科書である“The Elements of Statistical Learning” の全訳である。回帰や分類などの教師あり学習の入門的な話題から,ニューラルネットワーク,サポートベクトルマシンなどのより洗練された学習器,ブースティングやアンサンブル学習などの学習手法の高度化技術,さらにはグラフィカルモデルや高次元学習問題に対するスパース学習法などの最新の話題までを幅広く網羅しており,計算機科学などの情報技術を専門とする大学生・大学院生,および,機械学習技術を基礎科学や産業に応用しようとしている大学院生・研究者・技術者にとって最適な教科書である。 第1章 序章 第2章 教師あり学習の概要 2.1 導入 2.2 変数の種類と用語 2.3 予測のための二つの簡単なアプローチ:最小2乗法と最近傍法 2.3.1 線形モデルと最小2乗法 2.3.2 最近傍法 2.3.3 最小2 乗法から最近傍法へ 2.4 統計的決定理論 2.5 高次元での局所的手法 2.6 統計モデル,教師あり学習,関数近似 2.6.1 同時分布Pr(X,Y) のための統計モデル 2.6.2 教師あり学習 2.6.3 関数近似 2.7 構造化回帰モデル 2.7.1 なぜ問題が困難なのか 2.8 制限付き推定法 2.8.1 粗度に対する罰則とベイズ法 2.8.2 カーネル法と局所回帰 2.8.3 基底関数と辞書による方法 2.9 モデル選択と,バイアスと分散のトレードオフ 第3章 回帰のための線形手法 3.1 導入 3.2 線形回帰モデルと最小2乗法 3.2.1 例:前立腺癌 3.2.2 ガウス=マルコフ定理 3.2.3 単純な単回帰から重回帰へ 3.2.4 複数の目的変数 3.3 変数選択 3.3.1 最良変数組み合わせ選択 3.3.2 前向き/後向き漸次的選択法 3.3.3 前向き段階的回帰 3.3.4 例:前立腺癌(続き) 3.4 縮小推定 3.4.1 リッジ回帰 3.4.2 lasso 3.4.3 考察:部分集合選択,リッジ回帰,lasso 3.4.4 最小角回帰 3.5 入力に対して線形変換を行う方法 3.5.1 主成分回帰 3.5.2 部分最小2乗法 3.6 考察:選択法と縮小法の比較 3.7 複数の目的変数の縮小推定と変数選択 3.8 lasso と関連する解追跡アルゴリズムに関する詳細 3.8.1 逐次前向き段階的回帰 3.8.2 区分的線形解追跡アルゴリズム 3.8.3 ダンツィク選択器 3.8.4 グループlasso 3.8.5 lasso の性質について 3.8.6 総当たり座標最適化 3.9 計算上考慮すべき事柄 第4章 分類のための線形手法 4.1 導入 4.2 指示行列の線形回帰 4.3 線形判別分析 4.3.1 正則化判別分析 4.3.2 線形判別分析の計算 4.3.3 階数低減型線形判別分析 4.4 ロジスティック回帰 4.4.1 ロジスティック回帰モデルの当てはめ 4.4.2 例:南アフリカの心臓疾患データ 4.4.3 2 次近似と2 次推測 4.4.4 L1 正則化付きロジスティック回帰 4.4.5 ロジスティック回帰か線形判別分析か 4.5 分離超平面 4.5.1 ローゼンブラットのパーセプトロン学習アルゴリズム 4.5.2 最適分離超平面 第5章 基底展開と正則化 5.1 導入 5.2 区分的多項式とスプライン 5.2.1 3次自然スプライン 5.2.2 例:南アフリカの心臓疾患データ 5.2.3 例:音素認識 5.3 フィルタリングと特徴抽出 5.4 平滑化スプライン 5.4.1 自由度と平滑化行列 5.5 平滑化パラメータの自動選択 5.5.1 固定自由度 5.5.2 バイアスと分散のトレードオフ 5.6 ノンパラメトリックロジスティック回帰 5.7 多次元スプライン 5.8 正則化と再生核ヒルベルト空間 5.8.1 カーネルにより生成される関数空間 5.8.2 再生核ヒルベルト空間の例 5.9 ウェーブレット平滑化 5.9.1 ウェーブレット基底とウェーブレット変換 5.9.2 適応的ウェーブレットフィルタリング 第6章 カーネル平滑化法 6.1 1次元カーネル平滑化手法 6.1.1 局所線形回帰 6.1.2 局所多項式回帰 6.2 カーネル幅の選択 6.3 R^p における局所回帰 6.4 R^p における構造化局所回帰モデル 6.4.1 構造化カーネル 6.4.2 構造化回帰関数 6.5 局所尤度およびその他の手法 6.6 カーネル密度推定と識別 6.6.1 カーネル密度推定 6.6.2 カーネル密度分類器 6.6.3 単純ベイズ分類器 6.7 動径基底関数とカーネル 6.8 密度推定と識別のための混合モデル 6.9 計算上考慮すべき事柄 第7章 モデルの評価と選択 7.1 導入 7.2 バイアス,分散,モデルの複雑度 7.3 バイアス-分散分解 7.3.1 例:バイアスと分散のトレードオフ 7.4 訓練誤差の最善度 7.5 訓練標本外誤差の推定 7.6 有効パラメータ数 7.7 ベイズ法とベイズ情報量規準 7.8 最小記述長 7.9 バプニック=チェルボネンキス次元 7.9.1 例(続き) 7.10 交差確認 7.10.1 K分割交差確認 7.10.2 交差確認を実行する正しい方法と間違った方法 7.10.3 交差確認は本当に有効か 7.11 ブートストラップ法 7.11.1 例(続き) 7.12 条件付きテスト誤差か期待テスト誤差か 第8章 モデル推論と平均化 8.1 導入 8.2 ブートストラップと最尤推定法 8.2.1 平滑化の例 8.2.2 最尤推定による推論 8.2.3 ブートストラップ法vs.最尤推定 8.3 ベイズ法 8.4 ブートストラップ法とベイズ推論の関係 8.5 EM アルゴリズム 8.5.1 要素が二つの混合モデル 8.5.2 一般の場合のEM アルゴリズム 8.5.3 最大化-最大化手法としてのEM 8.6 事後確率分布から標本抽出するためのMCMC 8.7 バギング 8.7.1 例:模擬データによる木 8.8 モデルの平均と統合 8.9 確率的探索:バンピング 第9章 加法的モデル,木,および関連手法 9.1 一般化加法的モデル 9.1.1 加法的モデルの当てはめ 9.1.2 例:加法的ロジスティック回帰 9.1.3 まとめ 9.2 木に基づく方法 9.2.1 背景 9.2.2 回帰木 9.2.3 分類木 9.2.4 他の問題 9.2.5 例:スパムメール(続き) 9.3 抑制的規則導出法 9.3.1 例:スパムメール(続き) 9.4 多変量適応的回帰スプライン 9.4.1 例:スパムメール(続き) 9.4.2 例:試行データ 9.4.3 その他の話題 9.5 階層的エキスパート混合モデル 9.6 欠損データ 9.7 計算上考慮すべき事柄 第10章 ブースティングと加法的木 10.1 ブースティング法 10.1.1 本章の概要 10.2 ブースティングの加法的モデル当てはめ 10.3 前向き段階的加法的モデリング 10.4 指数損失とアダブースト 10.5 なぜ指数損失関数か 10.6 損失関数とロバスト性 10.7 データマイニングの「万能」手法 10.8 例:スパムデータ 10.9 ブースティング木 10.10 勾配ブースティングによる数値最適化 10.10.1 最急降下法 10.10.2 勾配ブースティング 10.10.3 勾配ブースティングの実装 10.11 ブースティングのための木の適切な大きさ 10.12 正則化 10.12.1 縮小法 10.12.2 部分標本化 10.13 説明性 10.13.1 予測変数の相対的重要性 10.13.2 部分依存図 10.14 具体例 10.14.1 カリフォルニアの住宅 10.14.2 ニュージーランドの魚 10.14.3 個人属性情報データ 第11章 ニューラルネットワーク 11.1 導入 11.2 射影追跡回帰 11.3 ニューラルネットワーク 11.4 ニューラルネットワークの当てはめ 11.5 ニューラルネットワークを訓練するときのいくつかの問題 11.5.1 初期値 11.5.2 過学習 11.5.3 入力のスケーリング 11.5.4 隠れユニットと隠れ層の数 11.5.5 複数の極小解 11.6 例:試行データ 11.7 例:郵便番号データ 11.8 考察 11.9 ベイズニューラルネットワークとNIPS 2003 チャレンジ 11.9.1 ベイズ,ブースティング,バギング 11.9.2 性能比較 11.10 計算上考慮すべき事柄 第12章 サポートベクトルマシンと適応型判別 12.1 導入 12.2 サポートベクトル分類器 12.2.1 サポートベクトル分類器の計算 12.2.2 例:混合分布(続き) 12.3 サポートベクトルマシンとカーネル 12.3.1 分類のためのSVM の計算 12.3.2 罰則化手法としてのSVM 12.3.3 関数推定と再生核 12.3.4 SVM と次元の呪い 12.3.5 SVM 分類器のための解追跡アルゴリズム 12.3.6 回帰のためのSVM 12.3.7 回帰とカーネル 12.3.8 考察 12.4 線形判別分析の一般化 12.5 適応型判別分析 12.5.1 FDA 推定値の計算 12.6 罰則付き判別分析 12.7 混合判別分析 12.7.1 例:波形データ 12.8 計算上考慮すべき事柄 第13章 プロトタイプ法と最近傍探索 13.1 導入 13.2 プロトタイプ法 13.2.1 K 平均クラスタリング 13.2.2 学習ベクトル量子化 13.2.3 混合ガウス分布 13.3 k 最近傍分類器 13.3.1 例:比較研究 13.3.2 例:k 最近傍法と画像シーンの分類 13.3.3 不変計量と接距離 13.4 適応的最近傍法 13.4.1 例 13.4.2 最近傍探索のための大域的な次元削減 13.5 計算上考慮すべき事柄 第14章 教師なし学習 14.1 導入 14.2 相関ルール 14.2.1 バスケット分析 14.2.2 アプリオリアルゴリズム 14.2.3 例:バスケット分析 14.2.4 教師あり学習としての教師なし学習 14.2.5 一般化相関ルール 14.2.6 教師あり学習法の選び方 14.2.7 例:バスケット分析(続き) 14.3 クラスタ分析 14.3.1 類似度行列 14.3.2 属性に基づく非類似度 14.3.3 オブジェクト間非類似度 14.3.4 クラスタリングアルゴリズム 14.3.5 組み合わせアルゴリズム 14.3.6 K 平均クラスタリング 14.3.7 ソフトなK 平均クラスタリングとしての混合ガウス分布 14.3.8 例:ヒト腫瘍マイクロアレイデータ 14.3.9 ベクトル量子化 14.3.10 K メドイドクラスタリング 14.3.11 実用上の問題 14.3.12 階層的クラスタリング 14.4 自己組織化マップ 14.5 主成分分析と主曲線・主曲面 14.5.1 主成分分析 14.5.2 主曲線と主曲面 14.5.3 スペクトラルクラスタリング 14.5.4 カーネル主成分分析 14.5.5 疎主成分分析 14.6 非負値行列分解 14.6.1 原型分析 14.7 独立成分分析と探索的射影追跡 14.7.1 隠れ変数と因子分析 14.7.2 独立成分分析 14.7.3 探索的射影追跡法 14.7.4 独立成分分析への直接的アプローチ 14.8 多次元尺度構成法 14.9 非線形次元削減と局所多次元尺度構成法 14.10 Google ページランクのアルゴリズム 第15章 ランダムフォレスト 15.1 導入 15.2 ランダムフォレストの定義 15.3 ランダムフォレストの詳細 15.3.1 抜取標本 15.3.2 変数重要度 15.3.3 類似度図 15.3.4 ランダムフォレストと過学習 15.4 ランダムフォレストの解析 15.4.1 分散と無相関効果 15.4.2 バイアス 15.4.3 適応型最近傍法 第16章 アンサンブル学習 16.1 導入 16.2 ブースティングと正則化軌跡 16.2.1 罰則付き回帰 16.2.2 「まばらなところに賭けろ」の法則 16.2.3 正則化軌跡,過学習,マージン 16.3 アンサンブルの学習 16.3.1 良いアンサンブルを学習する 16.3.2 規則のアンサンブル 第17章 無向グラフィカルモデル 17.1 導入 17.2 マルコフグラフとその性質 17.3 連続変数に対する無向グラフィカルモデル 17.3.1 グラフ構造が既知の場合のパラメータ推定 17.3.2 グラフ構造の推定 17.4 離散変数に対する無向グラフィカルモデル 17.4.1 グラフ構造が既知の場合のパラメータ推定 17.4.2 隠れ頂点 17.4.3 グラフ構造の推定 17.4.4 制限ボルツマンマシン 第18章 高次元の問題:p ≫ N 18.1 p がN よりもかなり大きい場合 18.2 対角線形判別分析と最近傍縮小重心 18.3 2次正則化を用いた線形分類器 18.3.1 正則化判別分析 18.3.2 2次正則化を用いたロジスティック回帰 18.3.3 サポートベクトル分類器 18.3.4 特徴選択 18.3.5 p ≫ N の場合の計算上の工夫 18.4 L_1 正則化を用いた線形分類器 18.4.1 lasso のタンパク質の質量分析への応用 18.4.2 関数型データに対する融合型lasso 18.5 特徴量が使えない場合の分類 18.5.1 例:文字列カーネルとタンパク質分類 18.5.2 内積カーネルとペア間距離に基づく分類器とその他のモデル 18.5.3 例:概要の分類 18.6 高次元回帰:教師あり主成分分析 18.6.1 潜在変数モデルとの関係 18.6.2 部分最小2 乗法との関係 18.6.3 特徴選択のための出力変数の前処理 18.7 特徴量評価と多重検定問題 18.7.1 誤り発見率 18.7.2 非対称閾値とマイクロアレイ有意性分析法 18.7.3 誤り発見率のベイズ的解釈
機械学習・ディープラーニングについて学ぶための、図解形式の解説書です。エンジニア1年生、機械学習関連企業への就職・転職を考えている人が、機械学習・ディープラーニングの基本と関連する技術、しくみ、開発の基礎知識などを一通り学ぶことができます。 1章 人工知能の基礎知識 人工知能とは 機械学習(ML)とは ディープラーニング(DL)とは 人工知能と機械学習が普及するまで 2章 機械学習の基礎知識 教師あり学習のしくみ 教師なし学習のしくみ 強化学習のしくみ 統計と機械学習の違い 機械学習と特徴量 得意な分野、苦手な分野 機械学習の活用事例 3章 機械学習のプロセスとコア技術 機械学習の基本ワークフロー データの収集 データの整形 モデルの作成と学習 バッチ学習とオンライン学習 テストデータによる予測結果の検証 学習結果に対する評価基準 ハイパーパラメータとモデルのチューニング 能動学習 相関と因果 フィードバックループ 4章 機械学習のアルゴリズム 回帰分析 サポートベクターマシン 決定木 アンサンブル学習 アンサンブル学習の応用 ロジスティック回帰 ベイジアンモデル 時系列分析と状態空間モデル k近傍(k-NN) 法とk平均(k-means)法 次元削減と主成分分析 最適化と遺伝的アルゴリズム 5章 ディープラーニングの基礎知識 ニューラルネットワークとその歴史 ディープラーニングと画像認識 ディープラーニングと自然言語処理 6章 ディープラーニングのプロセスとコア技術 誤差逆伝播法によるニューラルネットワークの学習 ニューラルネットワークの最適化 勾配消失問題 転移学習 7章 ディープラーニングのアルゴリズム 畳み込みニューラルネットワーク(CNN) 再帰型ニューラルネットワーク(RNN) 強化学習とディープラーニング オートエンコーダ GAN(敵対的生成ネットワーク) 物体検出 8章 システム開発と開発環境 人工知能プログラミングにおける主要言語 機械学習用ライブラリとフレームワーク ディープラーニングのフレームワーク GPUプログラミングと高速化 機械学習サービス
◎読者が選ぶビジネス書グランプリ2021 総合グランプリ受賞!! ◎ビジネス書大賞2020 特別賞(ソーシャルデザイン部門)受賞!! ◎ITエンジニア本大賞2021 ビジネス書部門 ベスト10! ◎累計17万5千部突破! 30万部超の名著『イシューからはじめよ』から9年――。 渾身の力で投げ込む、ファクトベースの現状分析と新たなる時代の展望! AI×データの発展により、時代は多面的に「確変モード」に突入した。 目まぐるしく動く社会の中、本書は以下の問いをひとつなぎにして答える。 ・現在の世の中の変化をどう見たらいいのか ・日本の現状をどう考えるべきか ・企業はどうしたらいいのか ・すでに大人の人はこれからどうサバイバルしていけばいいのか ・この変化の時代、子どもにはどんな経験を与え、育てればいいのか ・若者は、このAIネイティブ時代をどう捉え、生きのびていけばいいのか ・国としてのAI戦略、知財戦略はどうあるべきか? ・AI時代の人材育成は何が課題で、どう考えたらいいのか ・日本の大学など高等教育機関、研究機関の現状をどう考えたらいいのか ビジネス・教育・政策…全領域にファクトベースで斬り込む、著者渾身の書き下ろし! 意志なき悲観論でも、現実を直視しない楽観論でもない、建設的(Constructive)な、「残すに値する未来のつくり方」。 読者コメント 「久々にすっごい面白い本に出会った。これからの時代の生き方の教養書として面白い」 「これからの日本が進むべき道を豊富なデータと精緻なロジックで導き出している」 「新人教育やマネジメント教育に必須の本だと思う。これから日本で生きる全てのビジネスパーソンが何を目指し、何をすべきかが詳細に書かれている」 「安宅さんの『日本を何とかしたい』という熱い思いが伝わってきて、ビジネス書なのに感動しました。個人的に今年のベスト本になる予感」 「一気に読んだ。『未来をつくる人』をどう育てるか、についても多くのページが割かれている。子育て中の方にもおすすめ」 ●目次 1章 データ×AIが人類を再び解き放つ -- 時代の全体観と変化の本質 2章 「第二の黒船」にどう挑むか -- 日本の現状と勝ち筋 3章 求められる人材とスキル 4章 「未来を創る人」をどう育てるか 5章 未来に賭けられる国に -- リソース配分を変える 6章 残すに値する未来
人工知能と人間が共存する社会において、知性をどう認識し、人間はどのように生きればよいのか。3名の著者がこの問題を論じる。 人工知能と人間が共存する社会において、知性をどう認識し、人間はどのように生きればよいのか。3名の著者がこの問題を論じる。 第1部 人工知能とは 1章 人工知能のこれまで 2章 ディープラーニングとは何か 3章 ディープラーニングによる今後の技術進化 4章 消費インテリジェンス 5章 人間を超える人工知能 第2部 人工知能と世界の見方 1章 人工知能が「世界の見方」を変える 2章 認知構造はどう変わろうとしているのか 3章 強い同型論 4章 強い同型論で知能を説明する 5章 我々の「世界の見方」はどこからきてどこに向かうのか 第3部 人工知能と人間社会 1章 人工知能と人間社会 2章 自由主義の政治哲学が直面する課題 3章 人工知能とイノベーションの正義論 4章 世代間資産としての正義システム 5章 自由の根拠としての可謬性
人工知能とは何か? 機械学習・ディープラーニングとは何かを、高クオリティなマンガとともに、くわしく・やさしく解説していきます。 人工知能がどのように発展してきたのか、私たちの未来をどのように変えていくのか、そして人工知能とどのように向き合っていくのかをテーマにストーリーを構成。人工知能という難しそうなテーマを、より身近に感じられるようになる一冊です。 Chapter1 人工知能の正体 ・「人間の脳」と「人工知能」 ・人工知能の定義 Chapter2 人工知能の歴史 ・人工知能の誕生-第1次AIブーム- ・コンピュータとの対話-第2次AIブーム- Chapter3 人工知能の新時代① ・第3次AIブームの始まり ・機械学習の広がりと課題 Chapter4 人工知能の新時代② ・ディープラーニングとは何か ・ディープラーニングによるブレイクするー Chapter5 人工知能と心 ・心と身体性 ・人工知能と創造性 Chapter6 人工知能が変えていく未来 ・AIを牽引する企業たち ・「眼を持つ機械」の活用 Chapter7 人工知能が人類にもたらすもの ・人工知能と倫理的課題 ・「シンギュラリティ」とその先の未来
実用に供されることの多い回帰分析の方法を,豊富な実例と厳密な数学的証明をおりまぜて解説。 統計手法のうち,最も実用に供されることの多い回帰分析の方法を,豊富な実例と厳密な数学的証明をおりまぜて解説。〔内容〕回帰分析への誘い/ベクトルと行列/多変量正規分布/線形回帰モデル/仮説検定・区間推定・予測/説明変数の問題 1. 回帰分析への誘い 1.1 2変数回帰 1.2 最小2乗推定 1.3 本書のプラン 2. ベクトルと行列 2.1 ベクトルとベクトル空間 2.2 行列と行列式 2.3 2次形式の標準化 2.4 不等式と最大最小問題 2.5 ベクトルの微分とベクトル確率変数 3. 多変量正規分布 3.1 多変量正規分布 3.2 2次形式の分布 4. 線形回帰モデル 4.1 最小2乗推定 4.2 最小2乗推定量の性質 4.3 誤差分散σ2 の推定 4.4 回帰モデルの正準化 4.5 推定量の分布 5. 仮説検定,区間推定,予測 5.1 線形制約の検定 5.2 信頼領域の構成 5.3 区間予測 6. 標準的諸仮定からのズレ 6.1 誤差項の相関と分散不均一 6.2 仮説検定 6.3 正規分布からのズレ 6.4 残差の分析 7. 説明変数の問題 7.1 説明変数選択のための諸基準 7.2 多重共線性 7.3 変数変換と非線形性 8. 文献解題 9. 付 表 10. 索 引