【2025年】「異常検知」のおすすめ 本 74選!人気ランキング
- 入門機械学習による異常検知: Rによる実践ガイド
- Pythonではじめる異常検知入門 ―基礎から実践まで― (エンジニア入門シリーズ117)
- 時系列解析: 自己回帰型モデル・状態空間モデル・異常検知 (Advanced Python 1)
- 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)
- 時系列分析と状態空間モデルの基礎: RとStanで学ぶ理論と実装
- パターン認識と機械学習 上
- 漫画でわかる デジタルマーケティング×データ分析
- Rで学ぶVAR実証分析: 時系列分析の基礎から予測まで
- 異常検知と変化検知 (機械学習プロフェッショナルシリーズ)
- Pythonによる異常検知
この文章は、異常検知に関する書籍の目次と著者情報を紹介しています。目次では、異常検知の基本から正規分布や非正規データ、性能評価、次元削減、入力・出力データ、時系列データに関する異常検知までの各トピックが列挙されています。著者の井手剛は、機械工学と物理学の学位を持ち、IBMでの研究経験があります。
本書は「時系列解析」の手法を解説し、過去のデータから未来を予測するだけでなく、事象の理解にも役立つことを強調しています。マーケティングやIoTの実際の応用に焦点を当て、Pythonのサンプルコードを用いて基礎理論を説明。ARモデルやカルマンフィルタ、異常検知などの手法を段階的に学べるように構成されています。各手法の必要性や克服方法を提示し、読者が自学で応用範囲を広げられるよう工夫されています。
この書籍は、時系列分析の基礎から応用までを詳しく解説しています。内容は、時系列分析の基礎概念、ARMA過程、予測手法、VARモデル、単位根過程、見せかけの回帰と共和分、GARCHモデル、状態変化を伴うモデルに分かれています。著者の沖本竜義は、経済学と統計学の専門家であり、実データへの応用に必要な知識を提供しています。
この書籍は、時系列データの分析方法について基礎から詳しく解説しています。目次は、時系列分析の考え方、Box-Jenkins法、その他のトピック、状態空間モデル、カルマンフィルタ、ベイズ推論など多岐にわたります。著者は兵庫県出身の馬場真哉で、北海道大学水産科学院を修了しています。
この書籍は、地域密着型アウトドアショップがデジタルマーケティングを活用して業績を向上させるストーリーを通じて、デジタルマーケティングの基礎を学ぶ内容です。デジタル化を成功させるための条件や、重要な要素(MEO・SEO、データ分析、ECサイト構築、SNS活用など)が解説されています。著者は上野佑馬で、データ分析やデジタルマーケティングの専門家です。
デジタルマーケティングとデータ分析について漫画で分かりやすく学べる。基本的な内容が網羅的に学べるのでデジタルマーケティング職についたばかりのビジネスパーソンや個人事業や中小企業でこれからデジタルに力を入れようとしている経営者にオススメ!
本書は、AI・データ分析プロジェクトの成功には技術知識だけでなく「ビジネス力」が重要であることを強調しています。データサイエンティストのキャリアや業界の概要から始まり、プロジェクトの立ち上げ、実行、評価、収益化までのノウハウを網羅。具体的には、課題設定、案件獲得、データ分析手法の検討、レポーティングなどのプロセスを解説し、実務に役立つ情報を提供しています。著者は業界の専門家で、実践的な知識を基にした内容となっています。
この書籍は、数学の知識がなくても理解できる機械学習の入門書で、Pythonの機械学習ライブラリ「scikit-learn」を用いた実践的な解説が特徴です。著者はscikit-learnの開発に関わる専門家で、実践から理論へと学ぶスタイルを採用しています。特に「特徴量エンジニアリング」や「モデルの評価と改善」に焦点を当てており、従来の解説書にはない内容を提供しています。目次には教師あり学習、教師なし学習、データ処理などが含まれています。著者は機械学習の専門家で、産業界や学術界での経験があります。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、機械学習の有名なアルゴリズムをPythonを用いてゼロから実装することを目的としています。実用的なフレームワークを使用するのではなく、機械学習の仕組みを深く理解することで応用力や問題解決力を高めることを目指しています。内容は、Pythonの基本、機械学習に必要な数学、数値計算、そして具体的な機械学習アルゴリズムに関する解説を含んでおり、初心者や実務に携わるエンジニアに適しています。著者はシルバーエッグ・テクノロジーのチーフサイエンティストで、機械学習アルゴリズムの設計・実装に精通しています。
本書は、機械学習アルゴリズムをオールカラーの図を用いてわかりやすく解説した入門書です。17種類のアルゴリズムを紹介し、各アルゴリズムの仕組みや使用方法、注意点を詳述しています。Pythonを用いたコードも掲載されており、実際に試しながら学ぶことができます。機械学習を学ぶ初心者や業務で利用している方にも役立つ内容となっています。
この書籍は、ガウス過程に関する日本初の入門書であり、ベイズ的回帰モデルの柔軟性を解説しています。内容は線形回帰から始まり、ガウス過程の原理や教師なし学習、実応用に関する最新の話題も取り上げています。各章では、ガウス過程の基本概念、計算法、適用例などが詳しく説明されています。著者は統計や情報科学の専門家です。
本書は点過程の時系列解析に関する入門書で、データが特定のイベントの発生時刻の集合として扱われる点過程の理論と実データ解析を体系的に解説しています。地震や神経細胞の活動、金融取引などの現象を分析するために点過程が広く使われており、その応用範囲が拡大しています。著者は確率・統計の基礎を持つ読者を想定し、必要な理論や計算をできるだけ分かりやすく説明しています。目次にはポアソン過程やHawkes過程、統計推定法などが含まれています。著者は時系列解析や統計地震学の専門家です。
本書は、機械学習の解釈性とその重要性に焦点を当て、特にブラックボックスモデルの理解を助ける手法を紹介しています。著者は、解釈性を高めるための4つの手法(PFI、PD、ICE、SHAP)を説明し、実務での適用方法や注意点を解説します。具体的には、線形回帰モデルを通じて解釈性を理解し、機械学習モデルの振る舞いを説明できるようになることを目指します。また、実データ分析を通じて手法を実装することが可能です。著者は、機械学習プロジェクトに従事する経験を持つ専門家です。
本書は、計量経済分析の手法とRソフトウェアを用いた実行方法を解説した教科書で、経済学や経営学を学ぶ学生や研究者に向けています。内容は回帰分析、時系列分析(定常、非定常、GARCHモデルなど)、パネルデータ分析を中心に、各手法に必要な仮定やRのコードを詳述しています。著者は福地純一郎と伊藤有希で、いずれも経済学の専門家です。
『ゼロから作るDeep Learning』の続編である本書は、自然言語処理や時系列データ処理に焦点を当て、ディープラーニングの技術を実装レベルで学ぶことができます。具体的には、word2vec、RNN、LSTM、GRU、seq2seq、Attentionなどの最新技術を取り上げ、分かりやすく解説しています。著者は、人工知能の研究開発に従事する斎藤康毅氏です。
ゼロから分かるディープラーニングシリーズはどれも非常に分かりやすい。こちらの自然言語処理編は前作を読みディープラーニングの基本を理解してより高度なアーキテクチャを学びたいと思った時にオススメ。レベルは少々上がっているがそれでも分かりやすく学べる。RNNやLSTMなどが学べる
この書籍は、機械学習とディープラーニングの基本を図解形式で解説しており、エンジニア1年生や関連企業への就職・転職を目指す人に最適です。内容は、人工知能の基礎、機械学習とディープラーニングのプロセス、アルゴリズム、システム開発環境に関する知識を包括的に学べる構成になっています。著者は、実践的な機械学習システムの実装をサポートする専門家です。
この書籍は、人工知能(AI)の全体像を理解し、5年後の活用イメージを掴むための内容です。3部構成で、第一部ではAIの基礎知識、第二部では機械学習のアルゴリズム、第三部ではビジネスにおけるAIの活用法を学びます。著者の梅田弘之は、システムインテグレータの代表であり、AIを活用した新しいプロダクトやサービスの開発に取り組んでいます。
本書は、データサイエンスにおけるコンペティション、特にKaggleに焦点を当て、実践的なデータ分析手法やテクニックを紹介しています。分析コンペに参加することで得られるスキルは、実務でも役立つため、特徴量の作成やモデルの評価、チューニングなどの具体的な内容が含まれています。著者たちは、データサイエンスの専門家であり、実績を持つKaggleの競技者です。この本は、コンペに挑戦したい人や実務でのモデル精度向上を目指す人にとって有益な情報源となるでしょう。
データ分析コンペKaggleに挑戦するならこれをまず読んでおけば大丈夫!Kaggleに参加しないにしてもデータ分析の本質やテクニックがギュッと詰まっているので実務に活かせる。高度な内容も登場するが分かりやすく解説してくれるので初心者でも読みやすい。それでいてベテランの人も多くの学びがある書籍。著者はKaggleの最上位グランドマスターの方々であり説得力がある。過去のコンペの事例も取り上げてくれるのでそんなアプローチあったのかぁと学びが深い。文句なしの星5つ!
AIのベースの一つである機械学習とは、コンピュータに大量のデータや経験を与えることによって、事象のパターン・ルールを発見し、予測などまでをも実現する技術である。機械学習の基礎から筆者らの最先端の研究までを初めての人にもわかりやすく解説する一冊。 はじめに 1 機械学習とは何か――人工知能(AI)の基礎知識 1.1 人間の学習能力をコンピュータで再現する「機械学習」 1.2 AI研究、これまでとこれから 1.3 人工知能の/による/のための研究 2 人工知能と社会 2.1 研究者とともに、学生とともに、エンジニアとともに 2.2 さまざまな分野におけるAI技術の応用 2.3 AIと社会の関係 3 機械学習の基礎 3.1 AIの学習モデルと学習法 3.2 3種類の機械学習 3.3 教師付き学習とは 3.4 教師なし学習とは 3.5 強化学習とは 3.6 機械学習の原理:「学習する」とは 3.7 なぜ教師付き学習で予測が当たるのか? 3.8 直線で分離できない問題への対応 4 高度化する教師付き学習 4.1 誤りを含む教師情報への対応 4.2 弱い教師情報の活用 4.3 限られた情報からロバストに:信頼できる機械学習に向けて 4.4 理研AIPに見る汎用基盤研究の現在地 5 今後の展望 5.1 モデルと学習法と、ある種の制約 5.2 機械学習の新技術:生成AI 5.3 AIと人間の未来
本書は、数学が苦手な方でも機械学習を楽しく学べる入門書です。プログラマのアヤノと友達のミオの会話を通じて、機械学習の基本や実践方法を説明します。内容は、機械学習の重要性、回帰や分類の手法、モデルの評価、Pythonでの実装まで幅広くカバーし、数式も分かりやすく解説しています。特に、数式が苦手な方に配慮した内容になっています。著者はLINE Fukuokaのデータエンジニアで、実務経験を基にした知識を提供しています。
この入門書は、ベイズ主義機械学習の基本原理を「モデルの構築→推論の導出」という手順で分かりやすく解説しています。内容は、機械学習とベイズ学習、基本的な確率分布、ベイズ推論による学習と予測、混合モデルと近似推論、応用モデルの構築と推論の5章から構成されています。著者は須山敦志と杉山将で、機械学習を身近に理解できるよう丁寧に記述されています。
本書は、深層学習に関する改訂版のベストセラーで、トランスフォーマーやグラフニューラルネットワーク、生成モデルなどの手法を詳しく解説しています。著者は、理論的な証明がなくても納得できる説明を重視し、実用性を考慮した内容を提供。全12章で、基本構造から各種学習方法、データが少ない場合の対策まで幅広く網羅しています。著者は東北大学の教授であり、実務家との共同研究の経験も反映されています。
本書は、機械学習や深層学習の予備知識がない読者を対象に、理論を明快に解説する入門書です。内容は、機械学習と深層学習の基本、ニューラルネットの仕組み、勾配降下法、誤差逆伝播法、自己符号化器、畳み込みニューラルネット、再帰型ニューラルネット、ボルツマンマシン、深層強化学習など多岐にわたります。著者は、理論的な基礎を重視し、学びやすい形式で解説しています。
本書は、2018年に発行された機械学習に関する書籍の全面改訂版で、不確実性の高い機械学習プロジェクトを「仕事で使う」という視点から整理しています。新たに「ML Ops」や「機械学習モデルの検証」などの章が追加され、読者が直面する問題解決に役立つ内容となっています。著者は機械学習分野の専門家で、実践的な知識を提供しています。
機械学習の手法やテクニックにフォーカスした書籍ではなくて、機械学習を仕事に取り入れるためにはどうすればよいのか?どういうところに注意しなくてはいけないのかがまとめられた書籍。実務で機械学習を利用している人利用する可能性のある人は絶対に読むべき書籍。そもそも本当に機械学習を使う必要があるのかということをしっかり考える、機械学習ありきのプロジェクトは必ず失敗する。
本書は、機械学習の基本から先進的な手法までを網羅したロングセラーのPyTorch版で、理論や数式も解説しています。前半ではscikit-learnを用いた基本的な手法やデータ前処理、後半ではPyTorchを使ったディープラーニング手法(CNN、RNN、Transformerなど)を詳述。新たにTransformerアーキテクチャやグラフニューラルネットワークに関する章も追加され、実践的な知見が得られる内容となっています。著者は機械学習の専門家で、実装を通じて理解を深めることを目的としています。
本書は、機械学習におけるグラフの重要性を基礎から解説し、グラフニューラルネットワークの理論と応用を深く掘り下げたテキストです。内容は、グラフの定義やニューラルネットワークの基礎、グラフニューラルネットワークの定式化、様々なタスクへの応用、高速化手法、スペクトルグラフ理論、過平滑化現象の対策、表現能力など多岐にわたります。著者は佐藤竜馬氏で、研究者としての専門知識を活かし、理論に基づいた実践的な内容を提供しています。
この本は、ITエンジニア向けに機械学習の理論を基礎から学ぶためのものです。改訂新版として全面カラー化され、Pythonのコーディング環境もGoogle Colaboratoryに更新されています。機械学習の重要な理論がカバーされており、入門書としての定番となっています。内容はデータサイエンスの役割や機械学習アルゴリズムの分類から、最小二乗法、最尤推定法、パーセプトロン、ロジスティック回帰、k平均法、EMアルゴリズム、ベイズ推定まで多岐にわたります。著者は、中井悦司氏で、データ活用技術の普及に努めています。
ビジネスでの機械学習システムの設計や運用の解説書。エンド・ツー・エンドの機械学習システムを設計・構築する基本を明らかにする。 機械学習システム設計(デザイン)を業務での実践的な観点で解説!ビジネスとしての機械学習システムの設計や運用についての解説書。本書では、機械学習の最前線で活躍する著者の豊富な経験と知識に基づき、エンド・ツー・エンドの機械学習システムを設計・構築するための基本原則を明らかにします。訓練データの処理方法、特徴の使い方、モデルを再訓練する頻度、監視すべき項目……このような設計上の決定がシステム全体の目的達成にどのように寄与するのかを、実際のケーススタディを通じて理解します。機械学習プロジェクトを成功に導く上で必要な信頼性、拡張性、保守性、およびビジネス要件の変化への適応性を備えた機械学習システムを設計する包括的なアプローチを本書で学ぶことができます。
本書は、Human-in-the-Loop機械学習を活用して高品質な学習データを効率的に作成し、機械学習モデルの品質向上とコスト削減を図る方法を解説しています。特に、能動学習を用いたアノテーションプロセスの改善に重点を置き、実践的なテクニックやアノテーション管理手法を提供しています。データサイエンティストや機械学習エンジニアにとって、効果的なAIシステム開発に寄与する内容となっています。
本書は、機械学習のビジネスへの実装と運用に関する「MLOps」の実践ガイドです。第1部ではMLOpsの全体像や、それを実現するための技術、プロセス、文化について解説し、基礎知識を提供します。第2部では、実際の企業からの事例を通じて、MLOpsの具体的な実践方法を紹介しています。著者は機械学習の専門家であり、実用化に向けた知見が詰まった一冊です。