機械学習を解釈する技術〜予測力と説明力を両立する実践テクニック
商品プロモーションを含む場合があります
Amazonで詳しく見る
本書は、機械学習の解釈性とその重要性に焦点を当て、特にブラックボックスモデルの理解を助ける手法を紹介しています。著者は、解釈性を高めるための4つの手法(PFI、PD、ICE、SHAP)を説明し、実務での適用方法や注意点を解説します。具体的には、線形回帰モデルを通じて解釈性を理解し、機械学習モデルの振る舞いを説明できるようになることを目指します。また、実データ分析を通じて手法を実装することが可能です。著者は、機械学習プロジェクトに従事する経験を持つ専門家です。
まだレビューはありません